Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Можно ли доску размером 5×5 заполнить доминошками размером 1×2?

Вниз   Решение


Братья Петя и Вася решили снять смешной ролик и выложить его в интернет. Сначала они сняли, как каждый из них идёт из дома в школу — Вася шёл 8 минут, а Петя шёл 5 минут. Потом пришли домой и сели за компьютер монтировать видео: они запустили одновременно Васино видео с начала и Петино видео с конца (в обратном направлении); в момент, когда на обоих роликах братья оказались в одной и той же точке пути, они склеили Петино видео с Васиным. Получился ролик, на котором Вася идёт из дома в школу, а потом в какой-то момент вдруг превращается в Петю и идёт домой задом наперёд. А какой длительности получился ролик?

ВверхВниз   Решение


Разложите на простые множители числа 111, 1111, 11111, 111111, 1111111.

ВверхВниз   Решение


Илья всегда говорит правду, но когда ему задали дважды один и тот же вопрос, он дал на него разные ответы. Какой бы это мог быть вопрос?

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD диагонали пересекаются в точке O. Известно, что площади треугольников AOB и COD равны.
Докажите, что ABCD – трапеция или параллелограмм.

ВверхВниз   Решение


Найдите значение дроби В*А*Р*Е*Н*Ь*Е / К*А*Р*Л*С*О*Н, где разные буквы – это разные цифры, а между буквами стоит знак умножения.

ВверхВниз   Решение


Найти все равнобочные трапеции, которые разбиваются диагональю на два равнобедренных треугольника.

ВверхВниз   Решение


На плоскости дан угол, образованный двумя лучами a и b, и некоторая точка M.
Провести через точку M прямую c так, чтобы треугольник, образованный прямыми a, b и c, имел периметр данной величины.

ВверхВниз   Решение


а) Дан осесимметричный выпуклый 101-угольник. Докажите, что ось симметрии проходит через одну из его вершин.
б) Что можно сказать в случае десятиугольника?

ВверхВниз   Решение


Обозначим через S сумму следующего ряда:

S = 1 - 1 + 1 - 1 + 1 -... (12.1)

Преобразовав равенство (12.1 ), можно получить уравнение, из которого находится S:

S = 1 - (1 - 1 + 1 - 1 +...) = 1 - S $\displaystyle \Rightarrow$ S = $\displaystyle {\textstyle\frac{1}{2}}$.

Сумму S можно также найти объединяя слагаемые ряда (12.1 ) в пары:

S = (1 - 1) + (1 - 1) +...= 0 + 0 +...= 0;
S = 1 - (1 - 1) - (1 - 1) -...= 1 - 0 - 0 -...= 1.

Наконец, переставив местами соседние слагаемые, получаем еще одно значение S:

S = - 1 + 1 - 1 + 1 - 1 +...= - 1 + (1 - 1) + (1 - 1) +...= - 1.

Итак, действуя четырьмя разными способами, мы нашли четыре значения суммы S:

S = $\displaystyle {\textstyle\frac{1}{2}}$ = 0 = 1 = - 1.

Какое же значение имеет сумма S в действительности?

ВверхВниз   Решение


У каждого марсианина три руки. Могут ли семь марсиан взяться за руки?

ВверхВниз   Решение


Докажите, что произведение любых трёх последовательных натуральных чисел делится на 6.

ВверхВниз   Решение


Найдите геометрическое место точек M, лежащих внутри правильного треугольника ABC, для которых MA2 = MB2 + MC2.

ВверхВниз   Решение


Докажите, что для любого натурального n в десятичной записи чисел 2002n и  2002n + 2n  одинаковое число цифр.

Вверх   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 12]      



Задача 34935

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Показательные неравенства ]
Сложность: 2+
Классы: 7,8,9

Какое из чисел больше: 3111 или 1714?

Прислать комментарий     Решение

Задача 30905

Темы:   [ Алгебраические неравенства (прочее) ]
[ Показательные неравенства ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 6,7

Какое из чисел     (10 двоек) или     (9 троек) больше? А если троек не 9, а 8?

Прислать комментарий     Решение

Задача 35513

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Показательные неравенства ]
Сложность: 3+
Классы: 9,10,11

Докажите, что для любого натурального n в десятичной записи чисел 2002n и  2002n + 2n  одинаковое число цифр.

Прислать комментарий     Решение

Задача 109616

Темы:   [ Десятичная система счисления ]
[ Симметрия и инволютивные преобразования ]
[ Показательные неравенства ]
Сложность: 4-
Классы: 10,11

Может ли число, получаемое выписыванием в строку друг за другом целых чисел от 1 до n ( n>1 ), одинаково читаться слева направо и справа налево?
Прислать комментарий     Решение


Задача 109908

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Показательные неравенства ]
[ Доказательство от противного ]
Сложность: 4
Классы: 10,11

Обозначим через S(m) сумму цифр натурального числа m. Докажите, что существует бесконечно много таких натуральных n, что  S(3n) ≥ S(3n+1).

Прислать комментарий     Решение

Страница: << 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .