ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Клетки доски 2001×2001 раскрашены в шахматном порядке в чёрный и белый цвета так, что угловые клетки чёрные. Для каждой пары разноцветных клеток рисуется вектор, идущий из центра чёрной клетки в центр белой. Докажите, что сумма нарисованных векторов равна 0.

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 109]      



Задача 53327

Темы:   [ Равные треугольники. Признаки равенства ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 2+
Классы: 8,9

Два отрезка AB и CD пересекаются в точке O, которая является серединой каждого из них. Докажите равенство треугольников ACD и BDC.

Прислать комментарий     Решение

Задача 35023

Темы:   [ Построения (прочее) ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 2+
Классы: 8,9

Внутри угла расположена точка O. Как провести отрезок AB с концами на сторонах угла, проходящий через точку O, который делится точкой O пополам?
Прислать комментарий     Решение


Задача 89906

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Центральная симметрия помогает решить задачу ]
[ Свойства симметрии и центра симметрии ]
Сложность: 2+
Классы: 6,7

На прямоугольном торте лежит круглая шоколадка. Как разрезать торт на две равные части так, чтобы и шоколадка тоже разделилась ровно пополам?
Прислать комментарий     Решение


Задача 32096

Темы:   [ Раскраски ]
[ Центральная симметрия помогает решить задачу ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3-
Классы: 6,7,8,9

Прямая раскрашена в два цвета.
Докажите, что на ней найдутся такие три точки A, B и C, окрашенные в один цвет, что точка B является серединой отрезка AC.

Прислать комментарий     Решение

Задача 35697

Темы:   [ Векторы (прочее) ]
[ Центральная симметрия помогает решить задачу ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3
Классы: 9,10

Клетки доски 2001×2001 раскрашены в шахматном порядке в чёрный и белый цвета так, что угловые клетки чёрные. Для каждой пары разноцветных клеток рисуется вектор, идущий из центра чёрной клетки в центр белой. Докажите, что сумма нарисованных векторов равна 0.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 109]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .