ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 109]      



Задача 57854

Тема:   [ Центральная симметрия помогает решить задачу ]
Сложность: 4
Классы: 9

Даны четыре попарно непараллельные прямые и точка O, не лежащая на этих прямых. Постройте параллелограмм с центром O и вершинами, лежащими на данных прямых, — по одной на каждой.
Прислать комментарий     Решение


Задача 64470

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Поворот помогает решить задачу ]
[ Точки Брокара ]
Сложность: 4
Классы: 9,10,11

а) В треугольник ABC вписаны треугольники A1B1C1 и A2B2C2 так, что  C1A1BCA1B1CAB1C1ABB2A2BCC2B2CA,
A2C2AB.  Докажите, что эти треугольники равны.

б) Внутри треугольника ABC взяли точки A1, B1, C1, A2, B2, C2 так, что A1 - на отрезке AB1, B1 - на отрезке BC1, C1 – на отрезке CA1, A2 – на отрезке AC2, B2 – на отрезке BA2, C2 – на отрезке CB2 и углы BAA1, CBB1, ACC1, CAA2, ABB2, BCC2 равны. Докажите, что треугольники A1B1C1 и A2B2C2 равны.

Прислать комментарий     Решение

Задача 73729

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Геометрические интерпретации в алгебре ]
[ Уравнения в целых числах ]
[ Целочисленные решетки ]
Сложность: 4+
Классы: 8,9,10

Даны два взаимно простых натуральных числа a и b. Рассмотрим множество M целых чисел, представимых в виде  ax + by,  где x и y – целые неотрицательные числа.
  а) Каково наибольшее целое число c, не принадлежащее множеству М?
  б) Докажите, что из двух чисел n и  сn  (где n – любое целое) одно принадлежит М, а другое нет.

Прислать комментарий     Решение

Задача 55711

 [Теорема Монжа.]
Темы:   [ Центральная симметрия помогает решить задачу ]
[ Параллелограмм Вариньона ]
Сложность: 4+
Классы: 8,9

Докажите, что прямые, проведённые через середины сторон вписанного четырёхугольника перпендикулярно противоположным сторонам, пересекаются в одной точке.

Прислать комментарий     Решение


Задача 57844

Тема:   [ Центральная симметрия помогает решить задачу ]
Сложность: 4+
Классы: 9

В треугольнике ABC проведены медианы AF и CE. Докажите, что если $ \angle$BAF = $ \angle$BCE = 30o, то треугольник ABC правильный.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 109]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .