|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В выпуклом 1950-угольнике проведены все диагонали. Они разбивают его на многоугольники. Возьмём среди них многоугольник с самым большим числом сторон. Какое наибольшее число сторон он может иметь? На окружности даны точки A, B, C, D в указанном порядке. M — середина дуги AB. Обозначим точки пересечения хорд MC и MD с хордой AB через E и K. Докажите, что KECD — вписанный четырехугольник. Основанием прямой призмы является равнобедренная трапеция ABCD с основаниями AD=15 , BC=3 и боковой стороной AB=10 ; высота призмы равна 9. Плоскость P пересекает боковые рёбра AA1 , BB1 , CC1 и DD1 в точках K , L , M и N соответственно, причём AK=3 . Площади фигур BLMC , BLKA , CMND и DNKA образуют в указанном порядке арифметическую прогрессию. В каком отношении плоскость P делит объём призмы? Существует ли треугольник, градусная мера каждого угла которого выражается простым числом? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 240]
Существует ли треугольник, градусная мера каждого угла которого выражается простым числом?
Углы треугольника относятся как 2 : 3 : 4. Найдите отношение внешних углов треугольника.
Угол треугольника равен сумме двух других его углов. Докажите, что треугольник прямоугольный.
Через точку A , лежащую на окружности с центром O, проведены диаметр AB и хорда AC. Докажите, что угол BAC вдвое меньше угла BOC.
Высоты треугольника ABC, проведённые из вершин A и C, пересекаются в точке M. Найдите ∠AMC, если ∠A = 70°, ∠C = 80°.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 240] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|