|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи
Можно ли около четырёхугольника ABCD описать окружность,
если
В выпуклом четырёхугольнике MNPQ диагональ NQ является
биссектрисой угла PNM и пересекается с диагональю PM в точке S. Через середину гипотенузы прямоугольного треугольника проведён к ней перпендикуляр. Отрезок этого перпендикуляра, заключённый внутри треугольника, равен c, а отрезок, заключённый между одним катетом и продолжением другого, равен 3c. Найдите гипотенузу. Продолжение медианы AM треугольника ABC пересекает его описанную окружность в точке D. Найдите BC, если AC = DC = 1. |
Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 501]
В треугольнике ABC, где угол B прямой, а угол A меньше угла C, проведена медиана BM. На стороне AC взята точка L так, что ∠ABM = ∠MBL. Описанная окружность треугольника BML пересекает сторону AB в точке N. Докажите, что AN = BL.
На дуге BC описанной окружности равностороннего треугольника ABC взята точка P. Отрезки AP и BC пересекаются в точке Q. Докажите, что 1/PQ = 1/PB + 1/PC.
В выпуклом четырёхугольнике MNPQ диагональ NQ является
биссектрисой угла PNM и пересекается с диагональю PM в точке S.
Продолжение медианы AM треугольника ABC пересекает его описанную окружность в точке D. Найдите BC, если AC = DC = 1.
Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 501] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|