ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Около окружности описана равнобедренная трапеция с боковой стороной l. Одно из оснований трапеции равно a. Найдите площадь трапеции.

   Решение

Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 159]      



Задача 115590

Темы:   [ Классические неравенства ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Точка M лежит вне окружности с центром O. Прямая OM пересекает окружность в точках A и B, прямая, проходящая через точку M, касается окружности в точке C, точка H – проекция точки C на AB, а перпендикуляр к AB, восставленный в точке O, пересекает окружность в точке P. Известно, что  MA = a  и  MB = b.  Найдите MO, MC, MH, MP и расположите найденные значения по возрастанию.

Прислать комментарий     Решение

Задача 52660

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Площадь трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Около окружности описана равнобедренная трапеция с боковой стороной l. Одно из оснований трапеции равно a. Найдите площадь трапеции.

Прислать комментарий     Решение


Задача 53009

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Трапеция KLMN с основаниями LM и KN вписана в окружность, центр которой лежит на основании KN. Диагональ LN трапеции равна 4, а угол MNK равен 60o. Найдите основание LM трапеции.

Прислать комментарий     Решение


Задача 52894

Темы:   [ Признаки и свойства касательной ]
[ Вписанный угол, опирающийся на диаметр ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

AB — диаметр окружности, BC и CDA — касательная и секущая. Найдите отношение CD : DA, если BC равно радиусу окружности.

Прислать комментарий     Решение


Задача 52982

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Теорема Пифагора (прямая и обратная) ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC к стороне AC проведены высота BK и медиана MB, причём  AM = BM.  Найдите косинус угла KBM, если  AB = 1,  BC = 2.

Прислать комментарий     Решение

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 159]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .