ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи AB — диаметр окружности, BC и CDA — касательная и секущая. Найдите отношение CD : DA, если BC равно радиусу окружности. Решение |
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 159]
Точка M лежит вне окружности с центром O. Прямая OM пересекает окружность в точках A и B, прямая, проходящая через точку M, касается окружности в точке C, точка H – проекция точки C на AB, а перпендикуляр к AB, восставленный в точке O, пересекает окружность в точке P. Известно, что MA = a и MB = b. Найдите MO, MC, MH, MP и расположите найденные значения по возрастанию.
Около окружности описана равнобедренная трапеция с боковой стороной l. Одно из оснований трапеции равно a. Найдите площадь трапеции.
Трапеция KLMN с основаниями LM и KN вписана в окружность, центр которой лежит на основании KN. Диагональ LN трапеции равна 4, а угол MNK равен 60o. Найдите основание LM трапеции.
AB — диаметр окружности, BC и CDA — касательная и секущая. Найдите отношение CD : DA, если BC равно радиусу окружности.
В треугольнике ABC к стороне AC проведены высота BK и медиана MB, причём AM = BM. Найдите косинус угла KBM, если AB = 1, BC = 2.
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 159] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|