ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В окружность вписана трапеция ABCD, причём её основания AB = 1 и DC = 2. Обозначим точку пересечения диагоналей этой трапеции через F. Найдите отношение суммы площадей треугольников ABF и CDF к сумме площадей треугольников AFD и BCF.

   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 13]      



Задача 53197

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношения площадей подобных фигур ]
Сложность: 3+
Классы: 8,9

В окружность вписана трапеция ABCD, причём её основания AB = 1 и DC = 2. Обозначим точку пересечения диагоналей этой трапеции через F. Найдите отношение суммы площадей треугольников ABF и CDF к сумме площадей треугольников AFD и BCF.

Прислать комментарий     Решение


Задача 53518

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Отношения площадей подобных фигур ]
Сложность: 3+
Классы: 8,9

В трапеции ABCD диагонали AC и DB взаимно перпендикулярны,  ∠ABD = ∠ACD.  На продолжениях боковых сторон AB и DC за большее основание AD отложены отрезки AM и DN так, что получается новая трапеция MADN, подобная трапеции ABCD. Найдите площадь трапеции MBCN, если площадь трапеции ABCD равна S, а сумма углов при большем основании равна 150°.

Прислать комментарий     Решение

Задача 52429

Темы:   [ Диаметр, основные свойства ]
[ Отношения площадей подобных фигур ]
Сложность: 4-
Классы: 8,9

На стороне BC треугольника ABC как на диаметре построена окружность, пересекающая отрезок AB в точке D. Найдите отношение площадей треугольников ABC и BCD, если известно, что AC = 15, BC = 20 и $ \angle$ABC = $ \angle$ACD.

Прислать комментарий     Решение


Задача 53700

Темы:   [ Ортоцентр и ортотреугольник ]
[ Отношения площадей подобных фигур ]
Сложность: 4-
Классы: 8,9

Отрезки, соединяющие основания высот остроугольного треугольника, равны 8, 15 и 17. Найдите площадь треугольника.

Прислать комментарий     Решение


Задача 86498

Темы:   [ Площади криволинейных фигур ]
[ Касающиеся окружности ]
[ Отношения площадей подобных фигур ]
Сложность: 3-
Классы: 8,9

Через центр окружности проведены еще четыре окружности, касающиеся данной (см. рис.). Сравните площади фигур, выделенных на рисунке черным и серым цветом соответственно.

Прислать комментарий     Решение

Страница: << 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .