ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что у равнобедренного треугольника высота, опущенная на основание, является медианой и биссектрисой.

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 603]      



Задача 53399

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
Сложность: 3-
Классы: 8,9

Прямая, проведённая через вершину A треугольника ABC перпендикулярно его медиане BD, делит эту медиану пополам.
Найдите отношение сторон AB и AC.

Прислать комментарий     Решение

Задача 54307

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3-
Классы: 8,9

В равнобедренном треугольнике угол при вершине равен α, а площадь равна S. Найдите основание.

Прислать комментарий     Решение

Задача 52976

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Теорема Пифагора (прямая и обратная) ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3
Классы: 8,9

В равнобедренном прямоугольном треугольнике радиус вписанной окружности равен 2.
Найдите расстояние от вершины острого угла до точки, в которой вписанная окружность касается противолежащего этому углу катета.

Прислать комментарий     Решение

Задача 53321

Тема:   [ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Даны два равнобедренных треугольника с общим основанием. Докажите, что их медианы, проведённые к основанию, лежат на одной прямой.

Прислать комментарий     Решение

Задача 53324

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Равные треугольники. Признаки равенства ]
Сложность: 3
Классы: 8,9

Докажите, что у равнобедренного треугольника высота, опущенная на основание, является медианой и биссектрисой.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 603]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .