ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что биссектриса внешнего угла при вершине равнобедренного треугольника параллельна основанию. Верно ли обратное?

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 207]      



Задача 53446

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Докажите, что биссектриса внешнего угла при вершине равнобедренного треугольника параллельна основанию. Верно ли обратное?

Прислать комментарий     Решение

Задача 53496

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
Сложность: 3
Классы: 8,9

В трапеции ABCD (AD – большее основание) диагональ AC перпендикулярна стороне CD и делит угол BAD пополам. Известно, что  ∠CDA = 60°,  а периметр трапеции равен 2. Найдите AD.

Прислать комментарий     Решение

Задача 54041

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Поворот (прочее) ]
Сложность: 3
Классы: 8,9

Равнобедренный треугольник ABC с основанием BC повернули вокруг точки C так, что его вершина A оказалась в точке A1 на прямой BC. При этом вершина B перешла в некоторую точку B1, лежащую с точкой A по одну сторону от прямой BC. Полученный таким образом равнобедренный треугольник A1B1C повернули вокруг точки A1 так, что вершина B1 перешла в точку B2 на прямой BC. При этом вершина C перешла в некоторую точку C2, также лежащую с точкой A по одну сторону от прямой BC. Докажите, что  C2B2 || AC.

Прислать комментарий     Решение

Задача 65588

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 7,8,9

Высота АН треугольника АВС равна его медиане ВМ. На продолжении стороны АВ за точку В отложена точка D так, что  BD = AB.  Найдите угол BCD.

Прислать комментарий     Решение

Задача 65657

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Вспомогательные равные треугольники ]
Сложность: 3
Классы: 7,8,9

На стороне ВС треугольника АВС отмечена точка E, а на биссектрисе BD – точка F таким образом, что  EF || AC  и  AF = AD.  Докажите, что  AВ = ВЕ.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 207]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .