ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Вписанный угол
>>
Углы, опирающиеся на равные дуги и равные хорды
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Диагонали четырёхугольника ABCD, вершины которого расположены на окружности, пересекаются в точке M. Известно, что ∠ABC = 72°, ∠BCD = 102°, |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 499]
Диагонали выпуклого четырёхугольника ABCD, вписанного в окружность, пересекаются в точке E. Известно, что диагональ BD является биссектрисой угла ABC и что BD = 25, а CD = 15. Найдите BE.
Диагональ MP выпуклого четырёхугольника MNPQ, вписанного в окружность, является биссектрисой угла NMQ и пересекается с диагональю NQ в точке T. Найдите NP, если MT = 5, TP = 4.
Из вершины тупого угла A треугольника ABC опущена высота AD. Из точки D радиусом, равным AD, описана окружность, пересекающая стороны треугольника AB и AC в точках M и N соответственно. Найдите сторону AC, если известно, что AB = c, AM = m и AN = n.
Диагонали четырёхугольника ABCD, вершины которого расположены на окружности, пересекаются в точке M. Известно, что ∠ABC = 72°, ∠BCD = 102°,
В треугольнике ABC стороны CB и CA равны соответственно a и b. Биссектриса угла ACB пересекает сторону AB в точке K, а описанную окружность треугольника ABC – в точке M. Описанная окружность треугольника AMK вторично пересекает прямую CA в точке P. Найдите AP.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 499] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|