Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 499]
Прямая, проходящая через вершину
C равнобедренного
треугольника
ABC, пересекает основание
AB в точке
M,
а описанную окружность в точке
N. Докажите, что
CM . CN =
AC2
и
CM/
CN =
AM . BM/(
AN . BN).
Дан параллелограмм
ABCD с острым углом при
вершине
A. На лучах
AB и
CB отмечены точки
H и
K
соответственно так, что
CH =
BC и
AK =
AB. Докажите, что:
а)
DH =
DK;
б)
DKH ABK.
а) Стороны угла с вершиной
C касаются окружности
в точках
A и
B. Из точки
P, лежащей на окружности,
опущены перпендикуляры
PA1,
PB1 и
PC1 на прямые
BC,
CA
и
AB. Докажите, что
PC12 =
PA1 . PB1 и
PA1 :
PB1 =
PB2 :
PA2.
б) Из произвольной точки
O вписанной окружности
треугольника
ABC опущены перпендикуляры
OA',
OB',
OC'
на стороны треугольника
ABC и перпендикуляры
OA'',
OB'',
OC''
на стороны треугольника с вершинами в точках касания.
Докажите, что
OA' . OB' . OC' =
OA'' . OB'' . OC''.
Четырехугольник $ABCD$ – вписанный. Окружность, проходящая через точки $A$ и $B$, пересекает диагонали $AC$ и $BD$ в точках $E$ и $F$ соответственно. Пусть прямые $AF$ и $BC$ пересекаются в точке $P$, а прямые $BE$ и $AD$ – в точке $Q$. Докажите, что $PQ$ параллельна $CD$.
|
|
Сложность: 3 Классы: 8,9,10
|
В круге проведены два диаметра
AB и
CD. Доказать, что если
M —
произвольная точка окружности, а
P и
Q — её проекции на диаметры
AB и
CD, то длина отрезка
PQ не зависит от выбора точки
M.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 499]