ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сторона BC параллелограмма ABCD вдвое больше стороны CD, P – проекция вершины C на прямую AB, M – середина стороны AD.
Докажите, что  ∠DMP = 3∠APM.

   Решение

Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 207]      



Задача 53457

Темы:   [ Равные треугольники. Признаки равенства ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

Дана незамкнутая ломаная ABCD, причём  AB = CD,  ∠ABC = ∠BCD  и точки A и D расположены по одну сторону от прямой BC. Докажите, что  AD || BC.

Прислать комментарий     Решение

Задача 53660

Темы:   [ Признаки подобия ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

В выпуклом четырёхугольнике ABCD известно, что площадь треугольника ODC (O – точка пересечения диагоналей) есть среднее пропорциональное между площадями треугольников BOC и AOD. Докажите, что ABCD – трапеция или параллелограмм.

Прислать комментарий     Решение

Задача 53779

Темы:   [ Признаки подобия ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

Точки M и K лежат на сторонах соответственно AB и BC треугольника ABC, отрезки AK и CM пересекаются в точке P. Известно, что каждый из отрезков AK и CM делится точкой P в отношении  2 : 1,  считая от вершины. Докажите, что AK и CM – медианы треугольника.

Прислать комментарий     Решение

Задача 54116

Темы:   [ Признаки и свойства параллелограмма ]
[ Медиана, проведенная к гипотенузе ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

Сторона BC параллелограмма ABCD вдвое больше стороны CD, P – проекция вершины C на прямую AB, M – середина стороны AD.
Докажите, что  ∠DMP = 3∠APM.

Прислать комментарий     Решение

Задача 54179

Темы:   [ Трапеции (прочее) ]
[ Три прямые, пересекающиеся в одной точке ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Средняя линия трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Одна из боковых сторон трапеции равна сумме оснований.
Докажите, что биссектрисы углов при этой стороне пересекаются на другой боковой стороне.

Прислать комментарий     Решение

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 207]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .