ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан четырёхугольник, сумма диагоналей которого равна 18. Найдите периметр четырёхугольника с вершинами в серединах сторон данного.

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 330]      



Задача 53475

 [Теорема Вариньона]
Темы:   [ Параллелограмм Вариньона ]
[ Средняя линия треугольника ]
Сложность: 3-
Классы: 8,9

Докажите, что середины сторон любого четырёхугольника являются вершинами параллелограмма.

Прислать комментарий     Решение


Задача 53482

Темы:   [ Признаки и свойства параллелограмма ]
[ Средняя линия треугольника ]
[ Параллелограмм Вариньона ]
Сложность: 3-
Классы: 8,9

У четырёхугольника диагонали равны a и b. Найдите периметр четырёхугольника, вершинами которого являются середины сторон данного.

Прислать комментарий     Решение


Задача 116477

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Средняя линия треугольника ]
[ Вспомогательные подобные треугольники ]
Сложность: 3-
Классы: 7,8,9

На стороне AB треугольника ABC отмечена точка K. Отрезок CK пересекает медиану AM треугольника в точке P. Оказалось, что  AK = AP.
Найдите отношение  BK : PM.

Прислать комментарий     Решение

Задача 54123

Темы:   [ Параллелограмм Вариньона ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9

Дан четырёхугольник, сумма диагоналей которого равна 18. Найдите периметр четырёхугольника с вершинами в серединах сторон данного.

Прислать комментарий     Решение


Задача 54124

Темы:   [ Параллелограмм Вариньона ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9

Найдите периметр четырёхугольника с вершинами в серединах сторон прямоугольника с диагональю, равной 8.

Прислать комментарий     Решение


Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 330]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .