Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

В прямоугольном треугольнике ABC угол ACB – прямой. Пусть E – точка пересечения биссектрисы угла ABC со стороной AC. Точка D – середина стороны AB,  O – точка пересечения отрезков BE и CD. Через точку O проведён перпендикуляр к BO до пересечения со стороной BC в точке F. Известно, что
FC = b,  OC = 3b/2.  Найдите площадь треугольника ABC.

Вниз   Решение


На клетчатой доске размером 23×23 клетки стоят четыре фишки: в левом нижнем и в правом верхнем углах доски – по белой фишке, а в левом верхнем и в правом нижнем углах - по чёрной. Белые и чёрные фишки ходят по очереди, начинают белые. Каждым ходом одна из фишек сдвигается на любую соседнюю (по стороне) свободную клетку. Белые фишки стремятся попасть в две соседние по стороне клетки. Могут ли чёрные им помешать?

ВверхВниз   Решение


В треугольнике ABC проведены биссектрисы AD и BE. Найдите величину угла C, если известно, что  AD . BC = BE . AC и AC$ \ne$BC.

ВверхВниз   Решение


Пусть p – простое число и представление числа n в p-ичной системе имеет вид:   n = akpk + ak–1pk–1 + ... + a1p1 + a0.
Найдите формулу, выражающую показатель αp, с которым это число p входит в каноническое разложение n!, через n, p, и коэффициенты ak.

ВверхВниз   Решение


На полях A, B и C в левом нижнем углу шахматной доски стоят белые ладьи (см. рис.). Разрешается делать ходы по обычным правилам, однако после любого хода каждая ладья должна быть под защитой какой-нибудь другой ладьи. Можно ли за несколько ходов переставить ладьи так, чтобы каждая попала на обозначенное той же буквой поле в правом верхнем углу?

ВверхВниз   Решение


В остроугольном треугольнике ABC на высоте AD взята точка M, а на высоте BP – точка N так, что углы BMC и ANC – прямые. Расстояние между точками M и N равно  4 + 2,  угол MCN равен 30°. Найдите биссектрису CL треугольника CMN.

ВверхВниз   Решение


Даны отрезки a и b. С помощью циркуля и линейки постройте отрезок $ \sqrt{ab}$.

ВверхВниз   Решение


Автор: Mahdi Etesami Fard

В прямоугольном треугольнике ABC точка D – середина высоты, опущенной на гипотенузу AB. Прямые, симметричные AB относительно AD и BD, пересекаются в точке F. Найдите отношение площадей треугольников ABF и ABC.

ВверхВниз   Решение


В трапеции ABCD точки K и M являются соответственно серединами оснований AB = 5 и CD = 3. Найдите площадь трапеции, если треугольник AMB — прямоугольный, а DK — высота трапеции.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 159]      



Задача 54455

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Медиана, проведенная к гипотенузе ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4-
Классы: 8,9

В прямоугольном треугольнике ABC угол ACB – прямой. Пусть E – точка пересечения биссектрисы угла ABC со стороной AC. Точка D – середина стороны AB,  O – точка пересечения отрезков BE и CD. Через точку O проведён перпендикуляр к BO до пересечения со стороной BC в точке F. Известно, что
FC = b,  OC = 3b/2.  Найдите площадь треугольника ABC.

Прислать комментарий     Решение

Задача 54457

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Вспомогательные подобные треугольники ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC сторона AB равна стороне BC. Пусть D – основание перпендикуляра, опущенного из B на сторону AC,  E – точка пересечения биссектрисы угла A со стороной BC. Через точку E проведён перпендикуляр к AE до пересечения с продолжением стороны AC в точке F (C между F и D). Известно, что  AD = m,  FC = m/4.  Найдите площадь треугольника ABC.

Прислать комментарий     Решение

Задача 116680

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Поворотная гомотетия (прочее) ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Автор: Рудаков И.

На катетах прямоугольного треугольника ABC с прямым углом C вовне построили квадраты ACKL и BCMN; CE – высота треугольника. Докажите, что угол LEM прямой.

Прислать комментарий     Решение

Задача 54295

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Площадь трапеции ]
Сложность: 4
Классы: 8,9

В трапеции ABCD точки K и M являются соответственно серединами оснований AB = 5 и CD = 3. Найдите площадь трапеции, если треугольник AMB — прямоугольный, а DK — высота трапеции.

Прислать комментарий     Решение


Задача 55754

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Вспомогательные подобные треугольники ]
[ Композиции поворотов ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 8,9

Автор: Насыров З.

Круг поделили хордой AB на два круговых сегмента и один из них повернули на некоторый угол вокруг точки A. При этом повороте точка B перешла в точку D (см. рис.).

Докажите, что отрезки, соединяющие середины дуг сегментов с серединой отрезка BD, перпендикулярны друг другу.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 159]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .