Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Каково наибольшее количество последовательных натуральных чисел, у каждого из которых ровно четыре натуральных делителя (включая 1 и само число)?

Вниз   Решение


Вам пришло зашифрованное сообщение: Ф В М Ё Ж Т И В Ф Ю Найдите исходное сообщение, если известно, что шифрпреобразование заключалось в следующем. Пусть x1, x2 - корни трехчлена x2+3x+1. К порядковому номеру каждой буквы в стандартном русском алфавите (33 буквы) прибавлялось значение многочлена f(x)=x6+3x5+x4+x3+4x2+4x+3, вычисленное либо при x=x1, либо при x=x2 (в неизвестном нам порядке), а затем полученное число заменялось соответствующей ему буквой. (Задача с сайта www.cryptography.ru.)

ВверхВниз   Решение


Докажите, что любой выпуклый многоугольник можно разрезать на остроугольные треугольники.

ВверхВниз   Решение


В ряд записаны 20 различных натуральных чисел. Произведение каждых двух из них, стоящих подряд, является квадратом натурального числа. Первое число равно 42. Докажите, что хотя бы одно из чисел больше чем 16000.

ВверхВниз   Решение


Найдите площадь равнобедренного треугольника, если высота, опущенная на основание, равна 10, а высота, опущенная на боковую сторону, равна 12.

Вверх   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 542]      



Задача 54257

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Трапеции (прочее) ]
[ Биссектриса угла ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

Биссектрисы тупых углов при основании трапеции пересекаются на другом её основании.
Найдите стороны трапеции, если её высота равна 12, а длины биссектрис равны 15 и 13.

Прислать комментарий     Решение

Задача 54308

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

В прямоугольном треугольнике медианы, проведённые из вершин острых углов, равны    и  .  Найдите гипотенузу треугольника.

Прислать комментарий     Решение

Задача 54436

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC высота BD равна 11,2 а высота AE равна 12. Точка E лежит на стороне BC и BE : EC = 5 : 9. Найдите сторону AC.

Прислать комментарий     Решение


Задача 54437

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Найдите площадь равнобедренного треугольника, если высота, опущенная на основание, равна 10, а высота, опущенная на боковую сторону, равна 12.

Прислать комментарий     Решение


Задача 54438

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC высота CD = 7, а высота AE = 6. Точка E делит сторону BC так, что BE : EC = 3 : 4. Найдите сторону AB.

Прислать комментарий     Решение


Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 542]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .