|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Представляя разбиения как неубывающие последовательности, перечислить их в лексикографическом порядке. Пример для n=4: 1+1+1+1, 1+1+2, 1+3, 2+2, 4. Докажите формулу Эйлера: O1O22 = R2-2rR , где O1 , O2 — центры соответственно вписанной и описанной окружностей треугольника, r , R — радиусы этих окружностей. Разрежьте изображённую на рисунке доску на четыре одинаковые части, чтобы каждая из них содержала три заштрихованные клетки.
В прямоугольный треугольник вписан квадрат так, что одна из его сторон находится на гипотенузе. Боковые отрезки гипотенузы равны m и n. Найдите площадь квадрата.
|
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 1359]
В прямоугольный равнобедренный треугольник ABC с прямым углом при вершине B вписан прямоугольник MNKB так, что две его стороны MB и KB лежат на катетах, а вершина N — на гипотенузе AC. В каком отношении точка N должна делить гипотенузу, чтобы площадь параллелограмма составляла 18% площади треугольника?
Докажите, что обратная величина квадрата высоты прямоугольного треугольника, проведённой к гипотенузе, равна сумме обратных величин квадратов катетов.
В прямоугольный треугольник вписан квадрат так, что одна из его сторон находится на гипотенузе. Боковые отрезки гипотенузы равны m и n. Найдите площадь квадрата.
В равнобедренном треугольнике ABC с тупым углом A,
равным
Отрезок постоянной длины движется по плоскости так, что его концы скользят по сторонам прямого угла.
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 1359] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|