ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
В остроугольном треугольнике ABC проведены высоты BD и CE. Из вершин B и C на прямую ED опущены перпендикуляры BF и CG. Докажите, что EF = DG.
Докажите, что существует треугольник, стороны которого равны и параллельны медианам данного треугольника.
Вписанная окружность треугольника A1A2A3 касается сторон A2A3, A3A1 и A1A2 в точках S1, S2 и S3 соответственно. Пусть O1, O2 и O3 – центры вписанных окружностей треугольников A1S2S3, A2S3S1 и A3S1S2 соответственно. Докажите, что прямые O1S1, O2S2 и O3S3 пересекаются в одной точке. В треугольнике ABC угол A прямой, M – середина BC, AH – высота. Прямая, проходящая через точку M перпендикулярно AC, вторично пересекает описанную окружность треугольника AMC в точке P. Докажите, что отрезок BP делит отрезок AH пополам. В координатном пространстве провели все плоскости с уравнениями x ± y ± z = n (при всех целых n). Они разбили пространство на тетраэдры и октаэдры. Пусть точка (x0, y0, z0) с рациональными координатами не лежит ни в одной проведённой плоскости. Докажите, что найдётся натуральное k, при котором точка (kx0, ky0, kz0) лежит строго внутри некоторого октаэдра разбиения. Точка К – середина гипотенузы АВ прямоугольного равнобедренного треугольника ABC. Точки L и М выбраны на катетах ВС и АС соответственно так, что BL = СМ. Докажите, что треугольник LMK – также прямоугольный равнобедренный. Окружность, вписанная в прямоугольный треугольник ABC (∠ABC = 90°), касается сторон AB, BC, AC в точках C1, A1, B1 соответственно. Вневписанная окружность касается стороны BC в точке A2. A0 – центр окружности, описанной около треугольника A1A2B1; аналогично определяется точка C0. Найдите угол A0BC0.
В прямоугольный треугольник вписан квадрат так, что одна из его сторон находится на гипотенузе. Боковые отрезки гипотенузы равны m и n. Найдите площадь квадрата.
|
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 1358]
В прямоугольный равнобедренный треугольник ABC с прямым углом при вершине B вписан прямоугольник MNKB так, что две его стороны MB и KB лежат на катетах, а вершина N — на гипотенузе AC. В каком отношении точка N должна делить гипотенузу, чтобы площадь параллелограмма составляла 18% площади треугольника?
Докажите, что обратная величина квадрата высоты прямоугольного треугольника, проведённой к гипотенузе, равна сумме обратных величин квадратов катетов.
В прямоугольный треугольник вписан квадрат так, что одна из его сторон находится на гипотенузе. Боковые отрезки гипотенузы равны m и n. Найдите площадь квадрата.
В равнобедренном треугольнике ABC с тупым углом A,
равным
Отрезок постоянной длины движется по плоскости так, что его концы скользят по сторонам прямого угла.
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 1358]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке