Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

В треугольнике АВС проведены высота ВН, медиана ВВ1 и средняя линия А1С1 (А1 лежит на стороне ВС, С1 – на стороне АВ). Прямые А1С1 и ВВ1 пересекаются в точке М, а прямые С1В1 и А1Н – в точке N. Докажите, что прямые MN и BH параллельны.

Вниз   Решение


Точка E лежит на стороне AC правильного треугольника ABC, K – середина отрезка AE. Прямая, проходящая через точку E перпендикулярно прямой AB, и прямая, проходящая через точку C перпендикулярно прямой BC, пересекаются в точке D. Найдите углы треугольника BKD.

ВверхВниз   Решение


В ромбе ABCD  ∠А = 120°.  На сторонах BC и CD взяты точки M и N так, что  ∠NAM = 30°.
Докажите, что центр описанной окружности треугольника NAM лежит на диагонали ромба.

ВверхВниз   Решение


Две медианы треугольника равны. Докажите, что треугольник равнобедренный.

ВверхВниз   Решение


Точка M лежит на стороне AC равностороннего треугольника ABC со стороной 3a, причём  AM : MC = 1 : 2.  Точки K и L, расположенные на сторонах соответственно AB и BC являются вершинами другого равностороннего треугольника MKL. Найдите его стороны.

Вверх   Решение

Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 352]      



Задача 53409

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3
Классы: 8,9

Высоты треугольника ABC, проведённые из вершин B и C пересекаются в точке M. Известно, что  BM = CM.
Докажите, что треугольник ABC – равнобедренный.

Прислать комментарий     Решение

Задача 53443

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Равные треугольники. Признаки равенства ]
Сложность: 3
Классы: 8,9

Равные отрезки AB и CD пересекаются в точке O и делятся ею в отношении  AO : OB = CO : OD = 1 : 2.  Прямые AD и BC пересекаются в точке M.
Докажите, что треугольник DMB – равнобедренный.

Прислать комментарий     Решение

Задача 54141

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Вспомогательные равные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Две медианы треугольника равны. Докажите, что треугольник равнобедренный.

Прислать комментарий     Решение

Задача 54650

Темы:   [ Построения (прочее) ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3
Классы: 8,9

На плоскости даны две прямые и точка M. Найдите на одной из прямых такую точку X, что отрезок MX делится другой прямой пополам.

Прислать комментарий     Решение

Задача 54716

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вспомогательные равные треугольники ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

Точка M лежит на стороне AC равностороннего треугольника ABC со стороной 3a, причём  AM : MC = 1 : 2.  Точки K и L, расположенные на сторонах соответственно AB и BC являются вершинами другого равностороннего треугольника MKL. Найдите его стороны.

Прислать комментарий     Решение

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 352]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .