|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Продолжения сторон AB и CD прямоугольника ABCD пересекают некоторую прямую в точках M и N, а продолжения сторон AD и BC пересекают ту же прямую в точках P и Q. Постройте прямоугольник ABCD, если даны точки M, N, P, Q и длина a стороны AB. Продолжения сторон KN и LM выпуклого четырёхугольника KLMN пересекаются в точке P, а продолжения сторон KL и MN – в точке Q. Отрезок PQ перпендикулярен биссектрисе угла KQN. Найдите сторону MN, если KQ = 6, NQ = 4, а площади треугольника LQM и четырёхугольника KLMN равны. Постройте треугольник по a, mc и углу A. Даны окружность и две точки A и B внутри ее. Впишите в окружность прямоугольный треугольник так, чтобы его катеты проходили через данные точки. Продолжения сторон KN и LM выпуклого четырёхугольника KLMN пересекаются в точке P, а продолжения сторон KL и MN – в точке Q. Отрезок PQ перпендикулярен биссектрисе угла KQN. Найдите сторону KL, если KQ = 12, NQ = 8, а площадь четырёхугольника KLMN равна площади треугольника LQM. |
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 96]
Точки P и Q расположены на стороне BC треугольника ABC, причём BP : PC = 1 : 2 и BQ : QC = 4 : 1. Точка R расположена на продолжении стороны AC, а точка L является серединой той же стороны. При этом C принадлежит отрезку AR и AC : CR = 2 : 1. Найдите отношение площади четырёхугольника PQST к площади треугольника ABC, если S и T являются точками пересечения прямой BR с прямыми LQ и AP соответственно.
Продолжения сторон AD и BC выпуклого четырёхугольника ABCD пересекаются в точке M, а продолжения сторон AB и CD – в точке O. Отрезок MO перпендикулярен биссектрисе угла AOD. Найдите отношение площадей треугольника AOD и четырёхугольника ABCD, если OA = 12, OD = 8, CD = 2.
Продолжения сторон KN и LM выпуклого четырёхугольника KLMN пересекаются в точке P, а продолжения сторон KL и MN – в точке Q. Отрезок PQ перпендикулярен биссектрисе угла KQN. Найдите сторону KL, если KQ = 12, NQ = 8, а площадь четырёхугольника KLMN равна площади треугольника LQM.
Продолжения сторон KN и LM выпуклого четырёхугольника KLMN пересекаются в точке P, а продолжения сторон KL и MN – в точке Q. Отрезок PQ перпендикулярен биссектрисе угла KQN. Найдите сторону MN, если KQ = 6, NQ = 4, а площади треугольника LQM и четырёхугольника KLMN равны.
На стороне AD выпуклого четырёхугольника ABCD нашлась такая точка M, что CM и BM параллельны AB и CD соответственно.
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 96] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|