ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Решите уравнение a² + b² + c² + d² – ab – bc – cd – d + 2/5 = 0. ![]() |
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 96]
В треугольнике ABC из вершины A проведена прямая,
пересекающая сторону BC в точке D, лежащей между точками B и C,
причём
BD : BC =
На стороне AB треугольника ABC между точками A и B взята
точка D, причём
AD : AB =
Точки M и N лежат на сторонах соответственно AB и AC треугольника ABC, причём AM = CN и AN = BM. Докажите, что площадь четырёхугольника BMNC по крайней мере в три раза больше площади треугольника AMN.
Точки K и L расположены на стороне BC треугольника ABC, причём BK : KC = 1 : 3 и BL : LC = 1 : 2. Tочки M и N расположены на стороне AC этого же треугольника, причём AM = MN = NC. Найдите отношение площади четырёхугольника KLPQ к площади треугольника ABC, если P и Q являются точками пересечения прямой BN с прямыми ML и AK соответственно.
Точки P и Q на стороне BC треугольника ABC выбраны так, что BP : PQ : QC = 2 : 3 : 3. Точка R на продолжении стороны AB этого треугольника выбрана так, что B принадлежит отрезку AR и AB : BR = 1 : 2. Найдите отношение площади четырёхугольника PQST к площади треугольника ABC, если S и T являются точками пересечения прямых AQ и AP с прямой CR соответственно.
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 96] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |