Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 96]
Точки P и Q расположены на стороне BC треугольника ABC, причём BP : PQ : QC = 1 : 2 : 3. Точка R делит сторону AC этого треугольника так, что
AR : RC = 1 : 2. Чему равно отношение площади четырёхугольника PQST к площади треугольника ABC, если S и T – точки пересечения прямой BR с прямыми AQ и AP соответственно?
На сторонах AB, BC и AC треугольника ABC взяты соответственно точки M, N и K так, что AM : MB = 2 : 3, AK : KC = 2 : 1, BN : NC = 1 : 2. В каком отношении прямая MK делит отрезок AN?
На каждой стороне параллелограмма взято по точке. Площадь четырёхугольника с вершинами в этих точках равна половине площади параллелограмма. Докажите, что хотя бы одна из диагоналей четырёхугольника параллельна одной из сторон параллелограмма.
На гипотенузе AB прямоугольного треугольника ABC взята точка X, M и N – её проекции на катеты AC и BC.
а) При каком положении точки X длина отрезка MN будет наименьшей?
б) При каком положении точки X площадь четырёхугольника CMXN
будет наибольшей?
|
|
|
Сложность: 3+ Классы: 8,9,10
|
Длина каждой стороны выпуклого четырёхугольника ABCD не меньше 1 и не больше 2. Его диагонали пересекаются в точке O.
Докажите, что SAOB + SCOD ≤ 2(SAOD + SBOC).
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 96]