ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Периметр прямоугольного треугольника ABC равен 90, причём длина катета AC больше 20. Окружность радиуса 10, центр которой лежит на катете BC, касается прямых AB и AC. Найдите площадь треугольника ABC.

   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 312]      



Задача 55429

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Признаки и свойства касательной ]
Сложность: 4
Классы: 8,9

Периметр прямоугольного треугольника ABC равен 90, причём длина катета AC больше 20. Окружность радиуса 10, центр которой лежит на катете BC, касается прямых AB и AC. Найдите площадь треугольника ABC.

Прислать комментарий     Решение


Задача 55430

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Признаки и свойства касательной ]
Сложность: 4
Классы: 8,9

Из точки P проведены две касательные к окружности, диаметр MN которой равен 24. Одна из них касается окружности в точке M, а вторая пересекает прямую MN в точке Q, при этом отрезок MP больше 25. Найдите площадь треугольника MPQ, если его периметр равен 486.

Прислать комментарий     Решение


Задача 102694

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 8,9

В квадрате ABCD точка M лежит на стороне BC, а точка N — на стороне AB. Прямые AM и DN пересекаются в точке O.Найдите площадь квадрата, если известно, что DN = 4, AM = 3, а косинус угла DOA равен q.

Прислать комментарий     Решение


Задача 102695

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 8,9

В квадрате PQRS точка B лежит на стороне RS, а точка A — на стороне SP. Отрезки QB и RA пересекаются в точке T, причём косинус угла BTR равен -0, 2. Найдите сторону квадрата, если известно, что RA = 10, а QB = a.

Прислать комментарий     Решение


Задача 108629

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9

В остроугольном треугольнике ABC проведены высоты BD и AE , пересекающиеся в точке P . Докажите, что AB2 = AP· AE + BP· BD .
Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 312]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .