ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Две окружности с центрами M и N, лежащими на стороне AB треугольника ABC, касаются друг друга и пересекают стороны AC и BC в точках A, P и B, Q соответственно. Причем AM = PM = 2, BN = = QN = 5. Найдите радиус описанной около треугольника ABC окружности, если известно, что отношение площади треугольника AQN к площади треугольника MPB равно 15$ \sqrt{2+\sqrt{3}}$)/(5$ \sqrt{3}$).

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 5264]      



Задача 53196

Темы:   [ Вписанные и описанные окружности ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 2-
Классы: 8,9

В окружность вписан равнобедренный треугольник с основанием a и углом при основании $ \alpha$. Кроме того, построена вторая окружность, касающаяся первой окружности и основания треугольника, причём точка касания является серединой основания. Найдите радиус второй окружности. Если решение не единственное, рассмотрите все случаи.

Прислать комментарий     Решение


Задача 55433

Темы:   [ Теорема синусов ]
[ Площадь треугольника (прочее) ]
Сложность: 2-
Классы: 8,9

Две окружности с центрами M и N, лежащими на стороне AB треугольника ABC, касаются друг друга и пересекают стороны AC и BC в точках A, P и B, Q соответственно. Причем AM = PM = 2, BN = = QN = 5. Найдите радиус описанной около треугольника ABC окружности, если известно, что отношение площади треугольника AQN к площади треугольника MPB равно 15$ \sqrt{2+\sqrt{3}}$)/(5$ \sqrt{3}$).

Прислать комментарий     Решение


Задача 56826

Тема:   [ Треугольники (прочее) ]
Сложность: 2-
Классы: 7,8

а) Докажите, что если в треугольнике медиана совпадает с высотой, то этот треугольник равнобедренный.

б) Докажите, что если в треугольнике биссектриса совпадает с высотой, то этот треугольник равнобедренный.
Прислать комментарий     Решение


Задача 56827

Тема:   [ Треугольники (прочее) ]
Сложность: 2-
Классы: 7,8

Докажите, что биссектрисы треугольника пересекаются в одной точке.
Прислать комментарий     Решение


Задача 56828

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ ГМТ - прямая или отрезок ]
Сложность: 2-
Классы: 7,8

На высоте AH треугольника ABC взята точка M. Докажите, что  AB² – AC² = MB² – MC².

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 5264]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .