ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Через произвольную точку P стороны AC треугольника ABC параллельно его медианам AK и CL проведены прямые, пересекающие стороны BC и AB в точках E и F соответственно. Докажите, что медианы AK и CL делят отрезок EF на три равные части.

   Решение

Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 181]      



Задача 55354

Темы:   [ Разложение вектора по двум неколлинеарным векторам ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3
Классы: 8,9

Пусть M — точка пересечения медиан AA1, BB1 и CC1 треугольника ABC. Докажите, что $ \overrightarrow{MA_{1}} $ + $ \overrightarrow{MB_{1}} $ + $ \overrightarrow{MC_{1}} $ = $ \overrightarrow{0}$.

Прислать комментарий     Решение


Задача 55356

Темы:   [ Разложение вектора по двум неколлинеарным векторам ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3+
Классы: 8,9

Пусть M — точка пересечения медиан треугольника ABC, O — произвольная точка. Докажите, что $ \overrightarrow{OM} $ = $ {\frac{1}{3}}$($ \overrightarrow{OA} $ + $ \overrightarrow{OB} $ + $ \overrightarrow{OC}$).

Прислать комментарий     Решение


Задача 55764

Темы:   [ Гомотетия помогает решить задачу ]
[ Параллелограмм Вариньона ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Гомотетичные многоугольники ]
Сложность: 3+
Классы: 8,9

Четырёхугольник разрезан диагоналями на четыре треугольника. Докажите, что точки пересечения медиан этих треугольников образуют параллелограмм.

Прислать комментарий     Решение

Задача 55765

Темы:   [ Гомотетия помогает решить задачу ]
[ Три прямые, пересекающиеся в одной точке ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3+
Классы: 8,9

Медианы AA1, BB1 и CC1 треугольника ABC пересекаются в точке M; P – произвольная точка. Прямая la проходит через точку A параллельно прямой PA1, прямые lb и lc определяются аналогично. Докажите, что
  а) прямые la, lb и lc пересекаются в одной точке (обозначим её через Q);
  б) точка M лежит на отрезке PQ, причём  PM : MQ = 1 : 2.

Прислать комментарий     Решение

Задача 56482

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Подобные треугольники (прочее) ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3+
Классы: 9

Через произвольную точку P стороны AC треугольника ABC параллельно его медианам AK и CL проведены прямые, пересекающие стороны BC и AB в точках E и F соответственно. Докажите, что медианы AK и CL делят отрезок EF на три равные части.

Прислать комментарий     Решение

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 181]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .