Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 1026]
Докажите, что при повороте окружность переходит в окружность.
Точки A1, B1 и C1 симметричны центру описанной окружности треугольника ABC относительно его сторон.
Докажите, что треугольники ABC и A1B1C1 равны.
Дан треугольник
ABC. Точка
M, расположенная
внутри треугольника, движется параллельно стороне
BC до
пересечения со стороной
CA, затем параллельно
AB до
пересечения с
BC, затем параллельно
AC до пересечения
с
AB и т. д. Докажите, что через некоторое число шагов
траектория движения точки замкнется.
|
|
Сложность: 3 Классы: 7,8,9
|
Двое игроков поочередно выкладывают на прямоугольный стол пятаки.
Монету разрешается класть только на свободное место. Проигрывает тот,
кто не может сделать очередной ход. Докажите, что первый игрок всегда
может выиграть.
Окружность пересекает стороны
BC,
CA,
AB треугольника
ABC
в точках
A1 и
A2,
B1 и
B2,
C1 и
C2 соответственно.
Докажите, что если перпендикуляры к сторонам треугольника, проведенные
через точки
A1,
B1 и
C1, пересекаются в одной точке, то и перпендикуляры к сторонам, проведенные через
A2,
B2 и
C2,
тоже пересекаются в одной точке.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 1026]