ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Из точки A проведены касательные AB и AC к окружности с центром O. Докажите, что если из точки M отрезок AO виден под углом 90o, то отрезки OB и OC видны из нее под равными углами. Решение |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 283]
В треугольник ABC со сторонами AB = 5, BC = 7, CA = 10 вписана окружность. Прямая, пересекающая стороны AB и BC в точках M и K, касается этой окружности. Найдите периметр треугольника MBK.
Из общей точки проведены к окружности две касательные. Радиус окружности равен 11, а сумма касательных равна 120.
Вписанная окружность треугольника ABC касается сторон AB, BC и AC в точках C1, A1 и B1 соответственно. Известно, что AC1 = BA1 = CB1. Докажите, что треугольник ABC правильный.
AB и AC — касательные к одной окружности, BAC = 60o, длина ломаной BAC равна 1. Найдите расстояние между точками касания B и C.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 283] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|