Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Даны две прямые l1 и l2 и две точки A и B, не лежащие на этих прямых. Циркулем и линейкой постройте на прямой l1 такую точку X, чтобы прямые AX и BX высекали на прямой l2 отрезок, а) имеющий данную длину a; б) делящийся пополам в данной точке E прямой l2.

Вниз   Решение


В мешке лежат шарики двух разных цветов: черного и белого. Какое наименьшее число шариков нужно вынуть из мешка вслепую так, чтобы среди них заведомо оказались два шарика одного цвета?

ВверхВниз   Решение


Внешние углы треугольника ABC при вершинах A и C равны 115° и 140°. Прямая, параллельная прямой AC пересекает стороны AB и AC в точках M и N.
Найдите углы треугольника BMN.

ВверхВниз   Решение


Точки A и B лежат на прямых a и b соответственно, а точка P не лежит ни на одной из этих прямых. Циркулем и линейкой проведите через P прямую, пересекающую прямые a и b в точках X и Y соответственно таких, что длины отрезков AX и BY имеют а) данное отношение; б) данное произведение.

ВверхВниз   Решение


В квадрате со стороной длины 1 расположена ломаная без самопересечений, длина которой не меньше 200. Доказать, что найдётся прямая, параллельная одной из сторон квадрата, пересекающая ломаную не менее чем в 101-й точке.

ВверхВниз   Решение


Дана четырёхугольная пирамида SABCD , основание которой – параллелограмм ABCD . Точки M , N и K лежат на ребрах AS , BS и CS соответственно, причём AM:MS = 1:2 , BN:NS = 1:3 , CK:KS = 1:1 . Постройте сечение пирамиды плоскостью MNK . В каком отношении эта плоскость делит ребро SD ?

ВверхВниз   Решение


На плоскости взяты шесть точек A1, A2, B1, B2, C1, C2. Докажите, что если окружности, описанные около треугольников A1B1C1, A1B2C2, A2B1C2, A2B2C1, проходят через одну точку, то и окружности, описанные около треугольников A2B2C2, A2B1C1, A1B2C1, A1B1C2, проходят через одну точку.

ВверхВниз   Решение


Докажите, что при центральном проектировании прямая, не являющаяся исключительной, проецируется в прямую.

ВверхВниз   Решение


Длины сторон треугольника — последовательные целые числа. Найдите эти числа, если известно, что одна из медиан перпендикулярна одной из биссектрис.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 15]      



Задача 60629

Темы:   [ Целочисленные треугольники ]
[ Уравнения в целых числах ]
[ Арифметика остатков (прочее) ]
Сложность: 3-
Классы: 8,9,10

В прямоугольном треугольнике длины сторон – натуральные взаимно простые числа.
Докажите, что длина гипотенузы – нечётное число, а длины катетов имеют разную чётность.

Прислать комментарий     Решение

Задача 56871

Тема:   [ Целочисленные треугольники ]
Сложность: 3
Классы: 8,9

Длины сторон треугольника — последовательные целые числа. Найдите эти числа, если известно, что одна из медиан перпендикулярна одной из биссектрис.
Прислать комментарий     Решение


Задача 60701

Темы:   [ Целочисленные треугольники ]
[ Теорема Пифагора (прямая и обратная) ]
[ Уравнения в целых числах ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 8,9,10

Пусть в прямоугольном треугольнике длины сторон выражаются целыми числами. Докажите, что
  а) длина одного из катетов кратна 3,
  б) длина одной из трёх сторон делится на 5.

Прислать комментарий     Решение

Задача 109515

Темы:   [ Целочисленные треугольники ]
[ Простые числа и их свойства ]
[ Формула Герона ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Автор: Митькин Д.

Длины сторон треугольника – простые числа. Докажите, что его площадь не может быть целым числом.

Прислать комментарий     Решение

Задача 56872

Тема:   [ Целочисленные треугольники ]
Сложность: 4
Классы: 8,9

Длины всех сторон прямоугольного треугольника являются целыми числами, причем наибольший общий делитель этих чисел равен 1. Докажите, что его катеты равны 2mn и m2 - n2, а гипотенуза равна m2 + n2, где m и n — натуральные числа.



Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .