ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На дереве сидело 100 попугайчиков трёх видов: зелёные, жёлтые, пёстрые. Пролетая мимо, Ворона каркнула: "Среди вас зелёных больше чем пёстрых!" – "Да!" – согласилось 50 попугайчиков, а остальные прокричали "Нет!". Обрадовавшись завязавшемуся диалогу, Ворона снова каркнула: "Среди вас пёстрых больше чем жёлтых!" Опять половина попугайчиков закричали "Да!", а остальные – "Нет!". Зелёные попугайчики оба раза сказали правду, жёлтые – оба раза солгали, а каждый из пёстрых один раз солгал, а один раз сказал правду. Могло ли жёлтых попугайчиков быть больше чем зелёных?

Вниз   Решение


К окружности, вписанной в равнобедренный треугольник с основанием 12 и высотой 8, проведена касательная, параллельная основанию.
Найдите длину отрезка этой касательной, заключённого между сторонами треугольника.

ВверхВниз   Решение


Внутри треугольника ABC взята точка X. Прямая AX пересекает описанную окружность в точке A1. В сегмент, отсекаемый стороной BC, вписана окружность, касающаяся дуги BC в точке A1, а стороны BC — в точке A2. Точки B2 и C2 определяются аналогично. Докажите, что прямые AA2, BB2 и CC2 пересекаются в одной точке.

Вверх   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 181]      



Задача 56931

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 6+
Классы: 9

Внутри треугольника ABC взята точка X. Прямая AX пересекает описанную окружность в точке A1. В сегмент, отсекаемый стороной BC, вписана окружность, касающаяся дуги BC в точке A1, а стороны BC — в точке A2. Точки B2 и C2 определяются аналогично. Докажите, что прямые AA2, BB2 и CC2 пересекаются в одной точке.
Прислать комментарий     Решение


Задача 56932

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 6+
Классы: 9

а) На сторонах BC, CA и AB равнобедренного треугольника ABC с основанием AB взяты точки A1, B1 и C1 так, что прямые AA1, BB1 и CC1 пересекаются в одной точке. Докажите, что

$\displaystyle {\frac{AC_1}{C_1B}}$ = $\displaystyle {\frac{\sin ABB_1\sin CAA_1}{\sin BAA_1\sin CBB_1}}$.


б) Внутри равнобедренного треугольника ABC с основанием AB взяты точки M и N так, что  $ \angle$CAM = $ \angle$ABN и  $ \angle$CBM = $ \angle$BAN. Докажите, что точки C, M и N лежат на одной прямой.
Прислать комментарий     Решение

Задача 56933

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 6+
Классы: 9

В треугольнике ABC проведены биссектрисы AA1, BB1 и CC1. Биссектрисы AA1 и CC1 пересекают отрезки C1B1 и B1A1 в точках M и N. Докажите, что  $ \angle$MBB1 = $ \angle$NBB1.
Прислать комментарий     Решение


Задача 53897

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ Теоремы Чевы и Менелая ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 3
Классы: 8,9

В треугольнике ABC проведены высоты AH, BK и CL. Докажите, что  AK·BL·CH = AL·BH·CK = HK·KL·LH.

Прислать комментарий     Решение

Задача 67089

Темы:   [ Вспомогательные подобные треугольники ]
[ Теоремы Чевы и Менелая ]
Сложность: 3
Классы: 8,9,10

Пусть $AA_1$, $BB_1$, $CC_1$ – высоты остроугольного треугольника $ABC$; $A_2$ – точка касания вписанной окружности треугольника $AB_1C_1$ со стороной $B_1C_1$; аналогично определяются точки $B_2$, $C_2$. Докажите, что прямые $A_1A_2$, $B_1B_2$, $C_1C_2$ пересекаются в одной точке.
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 181]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .