ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Расстояние от точки X до центра правильного n-угольника равно d, r – радиус вписанной окружности n-угольника. |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 100]
Дан равнобедренный треугольник ABC с основанием AC. H – точка пересечения высот. На сторонах AB и BC выбраны точки M и K и соответственно так, что ∠KMH = 90°. Докажите, что из отрезков AK, CM и MK можно сложить прямоугольный треугольник.
Четыре перпендикуляра, опущенные из вершин выпуклого пятиугольника на противоположные стороны, пересекаются в одной точке.
Найдите сумму квадратов расстояний от вершин правильного n-угольника, вписанного в окружность радиуса R, до произвольной прямой, проходящей через центр многоугольника.
Расстояние от точки X до центра правильного n-угольника равно d, r – радиус вписанной окружности n-угольника.
Докажите, что сумма квадратов длин проекций сторон правильного n-угольника на любую прямую равна ½ na², где a – сторона n-угольника.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 100]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке