ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Через точки R и E, принадлежащие сторонам AB и AD параллелограмма ABCD и такие, что  AR = ⅔ AB,  AE = ⅓ AD, проведена прямая.
Найдите отношение площади параллелограмма к площади полученного треугольника.

Вниз   Решение


На сторонах AB, BC, CD и AD выпуклого четырёхугольника ABCD расположены точки M, N, K и L соответственно, причём AM : MB = 3 : 2, CN : NB = 2 : 3, CK = KD и AL : LD = 1 : 2. Найдите отношение площади шестиугольника MBNKDL к площади четырёхугольника ABCD.

ВверхВниз   Решение


На сторонах AB, BC и AC треугольника ABC взяты точки C1, A1 и B1 соответственно, причём

$\displaystyle {\frac{AC_{1}}{C_{1}B}}$ = $\displaystyle {\frac{BA_{1}}{A_{1}C}}$ = $\displaystyle {\frac{CB_{1}}{B_{1}A}}$ = 2.

Найдите площадь треугольника A1B1C1, если площадь треугольника ABC равна 1.

ВверхВниз   Решение


Через середину M стороны BC параллелограмма ABCD, площадь которого равна 1, и вершину A проведена прямая, пересекающая диагональ BD в точке O. Найдите площадь четырёхугольника OMCD.

ВверхВниз   Решение


На планете Тау Кита суша занимает больше половины всей площади. Доказать, что таукитяне могут прорыть через центр планеты шахту, соединяющую сушу с сушей.

ВверхВниз   Решение


В. треугольнике длины двух сторон равны 3, 14 и 0, 67. Найдите длину третьей стороны, если известно, что она является целым числом.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 290]      



Задача 88188

Темы:   [ Неравенство треугольника (прочее) ]
[ Площадь треугольника (прочее) ]
[ Задачи-шутки ]
Сложность: 2-
Классы: 5,6,7,8

Чему равна площадь треугольника со сторонами 18, 17, 35?
Прислать комментарий     Решение


Задача 55146

Тема:   [ Неравенство треугольника (прочее) ]
Сложность: 2
Классы: 8,9

У равнобедренного треугольника стороны равны 3 и 7. Какая из сторон является основанием?

Прислать комментарий     Решение


Задача 57309

Тема:   [ Алгебраические задачи на неравенство треугольника ]
Сложность: 2
Классы: 8

a, b и c - длины сторон произвольного треугольника. Докажите, что  a = y + z, b = x + z и c = x + y, где x, y и z — положительные числа.
Прислать комментарий     Решение


Задача 57310

Тема:   [ Алгебраические задачи на неравенство треугольника ]
Сложность: 2
Классы: 8

a, b и c - длины сторон произвольного треугольника. Докажите, что  a2 + b2 + c2 < 2(ab + bc + ca).
Прислать комментарий     Решение


Задача 57326

Тема:   [ Неравенство треугольника (прочее) ]
Сложность: 2
Классы: 6,7,8

В. треугольнике длины двух сторон равны 3, 14 и 0, 67. Найдите длину третьей стороны, если известно, что она является целым числом.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 290]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .