ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Точки $P$ и $Q$ выбираются на стороне $BC$ треугольника $ABC$ так, что $BP=CQ$. Отрезки $AP$ и $AQ$ в пересечении со вписанной в треугольник окружностью образуют четырехугольник $XYZT$. Найдите геометрическое место точек пересечения диагоналей таких четырехугольников. В квадрате со стороной длины 1 выбрано 102 точки, из которых никакие три не лежат на одной прямой. Доказать, что найдётся треугольник с вершинами в этих точках, площадь которого меньше, чем 1/100.
Периметр ромба равен 8, высота равна 1. Найдите тупой угол ромба.
Точки K, L, M и N – середины сторон соответственно AB, BC, CD и AD параллелограмма ABCD. Через точку, лежащую внутри треугольника, проведены
три прямые, параллельные его сторонам. Обозначим площади частей, на
которые эти прямые разбивают треугольник, так, как показано на рис.
Докажите, что
a/ В квадрат, площадь которого равна 18, вписан прямоугольник так, что на каждой стороне квадрата лежит одна вершина прямоугольника. Стороны прямоугольника относятся как 1 : 2.
В ромб вписана окружность. На какие четыре части она делится точками касания сторон, если острый угол ромба равен 37o?
ABCD — выпуклый четырехугольник площади S.
Угол между прямыми AB и CD равен a, угол между AD и BC
равен
AB . CD sin
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 80]
ABCD — выпуклый четырехугольник площади S.
Угол между прямыми AB и CD равен a, угол между AD и BC
равен
AB . CD sin
Через точку, лежащую внутри треугольника, проведены
три прямые, параллельные его сторонам. Обозначим площади частей, на
которые эти прямые разбивают треугольник, так, как показано на рис.
Докажите, что
a/
Площади треугольников ABC и A1B1C1 равны S
и S1, причем треугольник ABC не тупоугольный. Наибольшее из
отношений
a1/a, b1/b и c1/c равно k. Докажите,
что
S1
В квадрате со стороной длины 1 выбрано 102 точки, из которых никакие три не лежат на одной прямой. Доказать, что найдётся треугольник с вершинами в этих точках, площадь которого меньше, чем 1/100.
В остроугольном треугольнике ABC проведены медиана AM, биссектриса BK и высота CH. Пусть M'K'H' — треугольник с вершинами в точках пересечения трёх проведённых отрезков. Может ли площадь полученного треугольника быть больше 0,499 площади треугольника ABC?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 80]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке