ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что если углы выпуклого пятиугольника образуют арифметическую прогрессию, то каждый из них больше  36o.

   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 57380

Тема:   [ Многоугольники (неравенства) ]
Сложность: 2
Классы: 9

Докажите, что если углы выпуклого пятиугольника образуют арифметическую прогрессию, то каждый из них больше  36o.
Прислать комментарий     Решение


Задача 35234

Тема:   [ Многоугольники (неравенства) ]
Сложность: 2+
Классы: 7,8,9

В круг радиуса 1 вписан пятиугольник. Докажите, что сумма длин его сторон и диагоналей меньше 17.

Прислать комментарий     Решение

Задача 57386

Тема:   [ Многоугольники (неравенства) ]
Сложность: 3
Классы: 9

а) Докажите, что если длины проекций отрезка на две взаимно перпендикулярные прямые равны a и b, то его длина не меньше  (a + b)/$ \sqrt{2}$.
б) Длины проекций многоугольника на координатные оси равны a и b. Докажите, что его периметр не меньше  $ \sqrt{2}$(a + b).
Прислать комментарий     Решение


Задача 78590

Тема:   [ Многоугольники (неравенства) ]
Сложность: 3+
Классы: 9,10,11

Внутри окружности расположен выпуклый пятиугольник (вершины могут лежать как внутри, так и на окружности). Доказать, что хотя бы одна из его сторон не больше стороны правильного пятиугольника, вписанного в эту окружность.
Прислать комментарий     Решение


Задача 78196

Тема:   [ Многоугольники (неравенства) ]
Сложность: 4
Классы: 10,11

n отрезков длины 1 пересекаются в одной точке. Доказать, что хотя бы одна сторона 2n-угольника, образованного их концами, не меньше стороны правильного 2n-угольника, вписанного в окружность диаметра 1.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .