ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На медиане BM треугольника ABC взята точка X. Докажите, что если AB < BC, то  $ \angle$XAB > $ \angle$XCB.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]      



Задача 115605

Темы:   [ Неравенства для углов треугольника ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

На окружности с центром O лежит точка X . На диаметре, выходящем из точки X , возьмём точку Y так, чтобы точка O лежала между X и Y . Требуется провести через точку Y хорду AB так, чтобы угол AXB был минимален.
Прислать комментарий     Решение


Задача 57457

Тема:   [ Неравенства для углов треугольника ]
Сложность: 4+
Классы: 9

Докажите, что если a + b < 3c, то  tg($ \alpha$/2)tg($ \beta$/2) < 1/2.
Прислать комментарий     Решение


Задача 57458

Тема:   [ Неравенства для углов треугольника ]
Сложность: 4+
Классы: 9

Пусть  $ \alpha$,$ \beta$,$ \gamma$ — углы остроугольного треугольника. Докажите, что если  $ \alpha$ < $ \beta$ < $ \gamma$, то  sin 2$ \alpha$ > sin 2$ \beta$ > sin 2$ \gamma$.
Прислать комментарий     Решение


Задача 57459

Тема:   [ Неравенства для углов треугольника ]
Сложность: 5
Классы: 9

Докажите, что  cos 2$ \alpha$ + cos 2$ \beta$ - cos 2$ \gamma$ $ \leq$ 3/2.
Прислать комментарий     Решение


Задача 57460

Тема:   [ Неравенства для углов треугольника ]
Сложность: 5
Классы: 9

На медиане BM треугольника ABC взята точка X. Докажите, что если AB < BC, то  $ \angle$XAB > $ \angle$XCB.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .