ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В выпуклом четырехугольнике сумма расстояний от вершины до сторон одна и та же для всех вершин. Докажите, что этот четырехугольник является параллелограммом.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 37]      



Задача 57699

Тема:   [ Скалярное произведение. Соотношения ]
Сложность: 5
Классы: 9

Докажите, что в выпуклом k-угольнике сумма расстояний от любой внутренней точки до сторон постоянна тогда и только тогда, когда сумма векторов единичных внешних нормалей равна нулю.
Прислать комментарий     Решение


Задача 57700

Тема:   [ Скалярное произведение. Соотношения ]
Сложность: 5+
Классы: 9

В выпуклом четырехугольнике сумма расстояний от вершины до сторон одна и та же для всех вершин. Докажите, что этот четырехугольник является параллелограммом.
Прислать комментарий     Решение


Задача 34961

Темы:   [ Геометрические неравенства (прочее) ]
[ Скалярное произведение. Соотношения ]
Сложность: 3
Классы: 9,10,11

Дано 8 действительных чисел: a,b,c,d,,e,f,g,h. Докажите, что хотя бы одно из 6 чисел ac+bd, ae+bf, ag+bh, ce+df, cg+dh, eg+fh неотрицательно.
Прислать комментарий     Решение


Задача 35556

Темы:   [ Стереометрия (прочее) ]
[ Скалярное произведение. Соотношения ]
Сложность: 3
Классы: 10,11

Известно, что в тетраэдре две пары скрещивающихся ребер перепндикулярны. Докажите, что и третья пара скрещивающихся ребер обладает этим свойством.
Прислать комментарий     Решение


Задача 108553

Темы:   [ Метод координат на плоскости ]
[ Скалярное произведение. Соотношения ]
Сложность: 3
Классы: 8,9

Даны точки A(- 2;3), B(2;6), C(6; - 1) и D(- 3; - 4). Докажите, что диагонали четырёхугольника ABCD перпендикулярны.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 37]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .