ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Найдите трилинейные координаты вершин треугольника Брокара.
б) Найдите трилинейные координаты точки Штейнера (см. задачу 19.55.2).

   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 11]      



Задача 57803

Тема:   [ Трилинейные координаты ]
Сложность: 6
Классы: 9,10

Докажите, что касательная к вписанной окружности в точке (x0 : y0 : z0) задается уравнением

$\displaystyle {\frac{x}{\sqrt{x_0}}}$cos$\displaystyle {\frac{\alpha }{2}}$ + $\displaystyle {\frac{y}{\sqrt{y_0}}}$cos$\displaystyle {\frac{\beta }{2}}$ + $\displaystyle {\frac{z}{\sqrt{z_0}}}$cos$\displaystyle {\frac{\gamma }{2}}$ = 0.


Прислать комментарий     Решение

Задача 57799

Тема:   [ Трилинейные координаты ]
Сложность: 6+
Классы: 9,10

На сторонах треугольника ABC внешним (внутренним) образом построены правильные треугольники ABC1, AB1C и A1BC. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке. Найдите трилинейные координаты этой точки.
Прислать комментарий     Решение


Задача 57796

Тема:   [ Трилинейные координаты ]
Сложность: 7
Классы: 9,10

Продолжения сторон выпуклого четырехугольника ABCD пересекаются в точках P и Q. Докажите, что точки пересечения биссектрис внешних углов при вершинах A и C, B и D, P и Q лежат на одной прямой.
Прислать комментарий     Решение


Задача 57804

Тема:   [ Трилинейные координаты ]
Сложность: 7
Классы: 9,10

Докажите, что вписанная окружность касается окружности девяти точек (Фейербах). Найдите трилинейные координаты точки касания.
Прислать комментарий     Решение


Задача 57805

Тема:   [ Трилинейные координаты ]
Сложность: 7
Классы: 9,10

а) Найдите трилинейные координаты вершин треугольника Брокара.
б) Найдите трилинейные координаты точки Штейнера (см. задачу 19.55.2).
Прислать комментарий     Решение


Страница: << 1 2 3 >> [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .