ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Можно ли множество всех натуральных чисел, больших 1, разбить на два непустых подмножества так, чтобы для каждых двух чисел a и b из одного множества число ab – 1 принадлежало другому? Лесник считал сосны в лесу. Он обошёл 5 кругов, изображённых на рисунке, и внутри каждого круга насчитал ровно 3 сосны. Внутри выпуклого 2n-угольника взята точка P.
Через каждую вершину и точку P проведена прямая.
Докажите, что найдется сторона 2n-угольника, с которой
ни одна из проведенных прямых не имеет общих внутренних точек.
Доказать, что произведение двух последовательных натуральных чисел не является степенью никакого целого числа. Какое наименьшее число точек достаточно отметить
внутри выпуклого n-угольника, чтобы внутри любого треугольника
с вершинами в вершинах n-угольника содержалась
хотя бы одна отмеченная точка?
|
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 126]
Мишень представляет собой треугольник, разбитый тремя семействами параллельных прямых на 100 равных правильных треугольничков с единичными сторонами. Снайпер стреляет по мишени. Он целится в треугольничек и попадает либо в него, либо в один из соседних с ним по стороне. Он видит результаты своей стрельбы и может выбирать, когда стрельбу заканчивать. Какое наибольшее число треугольничков он может с гарантией поразить ровно пять раз?
На дне рождения у Васи было 10 ребят (включая Васю). Оказалось, что у каждых двух из этих ребят есть общий дедушка.
В прямоугольнике 3×4 расположено 6 точек. Докажите, что среди
них найдутся две точки, расстояние между которыми не превосходит
На плоскости дано 25 точек, причем среди любых
трех из них найдутся две на расстоянии меньше 1. Докажите,
что существует круг радиуса 1, содержащий не меньше 13 из этих точек.
Какое наименьшее число точек достаточно отметить
внутри выпуклого n-угольника, чтобы внутри любого треугольника
с вершинами в вершинах n-угольника содержалась
хотя бы одна отмеченная точка?
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 126]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке