ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Докажите, что плоскость можно разбить на отрезки.

Вниз   Решение


Докажите, что круг можно разбить на отрезки.

ВверхВниз   Решение


Докажите, что многочлен  x44 + x33 + x22 + x11 + 1  делится на   x4 + x3 + x2 + x + 1.

ВверхВниз   Решение


Серёжа выбрал два различных натуральных числа a и b. Он записал в тетрадь четыре числа:  a,  a + 2,  b и  b + 2.  Затем он выписал на доску все шесть попарных произведений чисел из тетради. Какое наибольшее количество точных квадратов может быть среди чисел на доске?

ВверхВниз   Решение


Докажите, что в дереве каждые две вершины соединены ровно одним простым путем.

ВверхВниз   Решение


Докажите, что треугольник можно разбить на отрезки.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 58263

Тема:   [ Разбиение фигур на отрезки ]
Сложность: 2+
Классы: 8,9

Докажите, что четырехугольник (с границей и внутренностью) можно разбить на отрезки, т. е. представить в виде объединения непересекающихся отрезков.
Прислать комментарий     Решение


Задача 58264

Тема:   [ Разбиение фигур на отрезки ]
Сложность: 4+
Классы: 8,9

Докажите, что треугольник можно разбить на отрезки.
Прислать комментарий     Решение


Задача 58265

Тема:   [ Разбиение фигур на отрезки ]
Сложность: 5
Классы: 8,9

Докажите, что круг можно разбить на отрезки.
Прислать комментарий     Решение


Задача 58266

Тема:   [ Разбиение фигур на отрезки ]
Сложность: 5
Классы: 8,9

Докажите, что плоскость можно разбить на отрезки.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .