ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Через точки A и B проведены окружности S1 и S2,
касающиеся окружности S, и окружность S3, перпендикулярная S.
Докажите, что S3 образует равные углы с окружностями S1 и S2.
Окружность SA проходит через точки A и C; окружность
SB проходит через точки B и C; центры обеих окружностей
лежат на прямой AB. Окружность S касается окружностей SA
и SB, а кроме того, она касается отрезка AB в точке C1.
Докажите, что CC1 — биссектриса треугольника ABC.
|
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 329]
Дана прямая l и точки A и B по одну сторону от неё. С помощью циркуля и линейки постройте на прямой l точку X, для которой AX + BX = a, где a — данная величина.
Докажите, что при инверсии сохраняется угол между
окружностями (между окружностью и прямой, между прямыми).
Через точки A и B проведены окружности S1 и S2,
касающиеся окружности S, и окружность S3, перпендикулярная S.
Докажите, что S3 образует равные углы с окружностями S1 и S2.
Окружность SA проходит через точки A и C; окружность
SB проходит через точки B и C; центры обеих окружностей
лежат на прямой AB. Окружность S касается окружностей SA
и SB, а кроме того, она касается отрезка AB в точке C1.
Докажите, что CC1 — биссектриса треугольника ABC.
В треугольнике ABC ALa и AMa – внутренняя и внешняя биссектрисы угла A. Пусть ωa – окружность, симметричная описанной окружности Ωa треугольника ALaMa относительно середины BC. Окружность ωb определена аналогично. Докажите, что ωa и ωb касаются тогда и только тогда, когда треугольник ABC прямоугольный.
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 329]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке