ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите неравенство   ,   где x1, ..., xn – положительные числа.

   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 258]      



Задача 115995

Темы:   [ Неравенство Коши ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 4-
Классы: 9,10,11

Автор: Фольклор

Докажите, что если  x > 0,  y > 0,  z > 0 и  x² + y² + z² = 1,  то  ,  и укажите, в каком случае достигается равенство.

Прислать комментарий     Решение

Задача 30881

Тема:   [ Неравенство Коши ]
Сложность: 4
Классы: 9,10

Докажите неравенство Коши для пяти чисел, то есть докажите, что при   a, b, c , d e ≥ 0 имеет место неравенство

Прислать комментарий     Решение

Задача 60310

Тема:   [ Неравенство Коши ]
Сложность: 4
Классы: 9,10,11

Докажите неравенство   ,   где x1, ..., xn – положительные числа.

Прислать комментарий     Решение

Задача 61401

Темы:   [ Классические неравенства (прочее) ]
[ Исследование квадратного трехчлена ]
Сложность: 4
Классы: 9,10,11

Докажите неравенство:   + ... + .
Значения переменных считаются положительными.

Прислать комментарий     Решение

Задача 61409

Темы:   [ Классические неравенства (прочее) ]
[ Выпуклость и вогнутость ]
[ Неравенство Иенсена ]
Сложность: 4
Классы: 10,11

Докажите неравенства:
  а)   n(x1 + ... + xn) ≥ ( + ... +
  б)   + ... + ;
  в)  

  г)     (неравенство Минковского).
  Значения переменных считаются положительными.

Прислать комментарий     Решение

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 258]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .