ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Ссылки по теме:
Статья Н. Виленкина "Комбинаторика"

Материалы по этой теме:


Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В четырёхугольной пирамиде SABCD основание ABCD имеет своей осью симметрии диагональ AC , которая равна 9, а точка E пересечения диагоналей четырёхугольника ABCD делит отрезок AC так, что отрезок AE меньше отрезка EC . Через середину бокового ребра пирамиды SABCD проведена плоскость, параллельная основанию и пересекающаяся с рёбрами SA , SB , SC , SD соответственно в точках A1 , B1 , C1 , D1 . Получившийся многогранник ABCDA1B1C1D1 , являющийся частью пирамиды SABCD , пересекается с плоскостью α по правильному шестиугольнику, со стороной 2. Найдите площадь треугольника ABD , если плоскость α пересекает отрезки BB1 и DD1 .

Вниз   Решение


В усеченную треугольную пирамиду вписана сфера, касающаяся оснований в точках $T_1$, $T_2$. Пусть $h$ – высота пирамиды, $R_1$, $R_2$ – радиусы окружностей, описанных около ее оснований, $O_1$, $O_2$ – центры этих окружностей. Докажите, что $$ R_1R_2h^2=(R_1^2-O_1T_1^2)(R_2^2-O_2T_2^2). $$

ВверхВниз   Решение


Придумайте многогранник, у которого нет трех граней с одинаковым числом сторон.

ВверхВниз   Решение


На плоскости дано n прямых общего положения. Чему равно число образованных ими треугольников?

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 506]      



Задача 35547

Темы:   [ Правило произведения ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 2+
Классы: 7,8

Сколькими способами можно прочитать слово "строка", двигаясь вправо или вниз?:
С Т Р О К А
Т Р О К А
Р О К А
О К А
К А
А

Прислать комментарий     Решение

Задача 35667

Темы:   [ Правило произведения ]
[ Криптография ]
[ Разбиения на пары и группы; биекции ]
Сложность: 2+
Классы: 8,9

Ключом шифра, называемого "поворотная решетка", является трафарет, изготовленный из квадратного листа клетчатой бумаги размера n×n
(n чётно). Некоторые из клеток вырезаются. Одна из сторон трафарета помечена. При наложении этого трафарета на чистый лист бумаги четырьмя возможными способами (помеченной стороной вверх, вправо, вниз, влево) его вырезы полностью покрывают всю площадь квадрата, причём каждая клетка оказывается под вырезом ровно один раз. Буквы сообщения, имеющего длину n², последовательно вписываются в вырезы трафарета, сначала наложенного на чистый лист бумаги помеченной стороной вверх. После заполнения всех вырезов трафарета буквами сообщения трафарет располагается в следующем положении и т. д. После снятия трафарета на листе бумаги оказывается зашифрованное сообщение.
Найдите число различных ключей для произвольного чётного числа n.

Прислать комментарий     Решение

Задача 60341

Темы:   [ Правило произведения ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 7,8

Сколько существует шестизначных чисел, делящихся на 5?

Прислать комментарий     Решение

Задача 60378

Тема:   [ Сочетания и размещения ]
Сложность: 2+
Классы: 7,8,9

Сколькими способами можно выбрать четырёх человек на четыре различные должности, если имеется девять кандидатов на эти должности?

Прислать комментарий     Решение

Задача 60382

Темы:   [ Сочетания и размещения ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 2+
Классы: 8,9

На плоскости дано n прямых общего положения. Чему равно число образованных ими треугольников?

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 506]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .