Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Сумма n последовательных натуральных чисел – простое число. Найдите все n, при которых это возможно.

Вниз   Решение


В прямоугольном треугольнике ABC (угол C прямой) BC=2AC, CH – высота, O1 и O2 – центры окружностей, вписанных соответственно в треугольники ACH и BCH, а O – центр окружности, вписанной в треугольник ABC. Пусть H1, H2 и H0 – проекции точек O1, O2 и O на гипотенузу. Докажите, что H1H=HH0=H0H2.

ВверхВниз   Решение


Дано несколько выпуклых многоугольников, причем нельзя провести прямую так, чтобы она не пересекала ни одного многоугольника и по обе стороны от нее лежал хотя бы один многоугольник. Докажите, что эти многоугольники можно заключить в многоугольник, периметр которого не превосходит суммы их периметров.

ВверхВниз   Решение


Незнайка рисует замкнутые пути внутри прямоугольника 5×8, идущие по диагоналям прямоугольников 1×2. На рисунке изображён пример пути, проходящего по 12 таким диагоналям. Помогите Незнайке нарисовать путь как можно длиннее.

ВверхВниз   Решение


На двух параллельных прямых a и b выбраны точки A1, A2, ..., Am и B1, B2, ..., Bn соответственно и проведены все отрезки вида AiBj
(1 ≤ im,  1 ≤ jn).  Сколько будет точек пересечения, если известно, что никакие три из этих отрезков в одной точке не пересекаются?

ВверхВниз   Решение


Какое наименьшее натуральное число не является делителем 50!?

ВверхВниз   Решение


В центре квадратного пруда плавает ученик. Внезапно к вершине квадрата подошёл учитель. Учитель не умеет плавать, но бегает в 4 раза быстрее, чем ученик плавает. Ученик бегает быстрее. Сможет ли он убежать?

ВверхВниз   Решение


В треугольнике ABC  AB = AC,  угол A – тупой, BD – биссектриса, AM – высота, E – основание перпендикуляра, опущенного из D на сторону BC. Из точки D восставлен перпендикуляр к BD, который пересекает сторону BC в точке F. Известно, что  ME = FC = a.  Найдите площадь треугольника ABC.

ВверхВниз   Решение


С помощью циркуля и линейки по данному отрезку a, постройте отрезок b, где

а) a = $ \sqrt{5}$, b = 1;

б) a = 7, b = $ \sqrt{7}$.

ВверхВниз   Решение


Когда мальчик Клайв подошел к дедушкиным настенным часам с кукушкой, на них было 12 часов 5 минут. Клайв стал крутить пальцем минутную стрелку, пока часовая не вернулась на прежнее место. Сколько "ку-ку" насчитал за это время дедушка в соседней комнате?

ВверхВниз   Решение


Сторона AD прямоугольника ABCD в три раза больше стороны AB. Точки M и N делят AD на три равные части. Найдите  ∠AMB + ∠ANB + ∠ADB.

ВверхВниз   Решение


Известно, что в выпуклом n-угольнике  (n > 3)  никакие три диагонали не проходят через одну точку.
Найдите число точек (отличных от вершины) пересечения пар диагоналей.

ВверхВниз   Решение


Можно ли через вершины куба провести 8 параллельных плоскостей так, чтобы расстояния между соседними плоскостями были равны?

ВверхВниз   Решение


Автор: Рубин А.

Три шахматиста A, B и C сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков A занял первое место, C – последнее, а по числу побед, наоборот, A занял последнее место, C – первое (за победу присуждается одно очко, за ничью – пол-очка)?

ВверхВниз   Решение


Предположим, что нашлись 15 простых чисел, образующих арифметическую прогрессию с разностью d. Докажите, что  d > 30000.

Вверх   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 133]      



Задача 116378

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Арифметическая прогрессия ]
Сложность: 3
Классы: 8,9

В вершинах 33-угольника записали в некотором порядке целые числа от 1 до 33. Затем на каждой стороне написали сумму чисел в её концах.
Могут ли на сторонах оказаться 33 последовательных целых числа (в каком-нибудь порядке)?

Прислать комментарий     Решение

Задача 116639

Темы:   [ Исследование квадратного трехчлена ]
[ Арифметическая прогрессия ]
[ Предел функции ]
Сложность: 3
Классы: 8,9,10

На доске написаны девять приведённых квадратных трёхчленов:  x² + a1x + b1x² + a2x + b2,  ...,  x² + a9x + b9. Известно, что последовательности  a1, a2, ..., a9  и  b1, b2, ..., b9  – арифметические прогрессии. Оказалось, что сумма всех девяти трёхчленов имеет хотя бы один корень. Какое наибольшее количество исходных трёхчленов может не иметь корней?

Прислать комментарий     Решение

Задача 60468

Темы:   [ Характеристические свойства и рекуррентные соотношения ]
[ Арифметическая прогрессия ]
Сложность: 3+
Классы: 8,9,10

Предположим, что нашлись 15 простых чисел, образующих арифметическую прогрессию с разностью d. Докажите, что  d > 30000.

Прислать комментарий     Решение

Задача 60856

Темы:   [ Квадратные корни (прочее) ]
[ Арифметическая прогрессия ]
Сложность: 3+
Классы: 8,9,10

Пусть a, b, c — различные простые числа. Докажите, что числа $ \sqrt{a}$, $ \sqrt{b}$, $ \sqrt{c}$ не могут быть членами одной арифметической прогрессии.

Прислать комментарий     Решение

Задача 64566

Темы:   [ Взвешивания ]
[ Арифметическая прогрессия ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 8,9

На диске хранится 2013 файлов размером 1 Мб, 2 Мб, 3 Мб, ..., 2012 Мб, 2013 Мб. Можно ли их распределить по трём папкам так, чтобы в каждой папке было одинаковое количество файлов и все три папки имели один и тот же размер (в Мб)?

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 133]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .