ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Сумма n последовательных натуральных чисел – простое число. Найдите все n, при которых это возможно. В прямоугольном треугольнике ABC (угол C прямой) BC=2AC, CH – высота, O1 и O2 – центры окружностей, вписанных соответственно в треугольники ACH и BCH, а O – центр окружности, вписанной в треугольник ABC. Пусть H1, H2 и H0 – проекции точек O1, O2 и O на гипотенузу. Докажите, что H1H=HH0=H0H2. Дано несколько выпуклых многоугольников, причем
нельзя провести прямую так, чтобы она не пересекала ни
одного многоугольника и по обе стороны от нее лежал
хотя бы один многоугольник. Докажите, что эти многоугольники
можно заключить в многоугольник, периметр которого
не превосходит суммы их периметров.
Незнайка рисует замкнутые пути внутри прямоугольника 5×8, идущие по диагоналям прямоугольников 1×2. На рисунке изображён пример пути, проходящего по 12 таким диагоналям. Помогите Незнайке нарисовать путь как можно длиннее. На двух параллельных прямых a и b выбраны точки A1, A2, ..., Am и B1, B2, ..., Bn
соответственно и проведены все отрезки вида AiBj Какое наименьшее натуральное число не является делителем 50!? В центре квадратного пруда плавает ученик. Внезапно к вершине квадрата подошёл учитель. Учитель не умеет плавать, но бегает в 4 раза быстрее, чем ученик плавает. Ученик бегает быстрее. Сможет ли он убежать? В треугольнике ABC AB = AC, угол A – тупой, BD – биссектриса, AM – высота, E – основание перпендикуляра, опущенного из D на сторону BC. Из точки D восставлен перпендикуляр к BD, который пересекает сторону BC в точке F. Известно, что ME = FC = a. Найдите площадь треугольника ABC.
С помощью циркуля и линейки по данному отрезку a, постройте отрезок b, где
а)
a =
б) a = 7,
b =
Когда мальчик Клайв подошел к дедушкиным настенным часам с кукушкой, на них было 12 часов 5 минут. Клайв стал крутить пальцем минутную стрелку, пока часовая не вернулась на прежнее место. Сколько "ку-ку" насчитал за это время дедушка в соседней комнате? Сторона AD прямоугольника ABCD в три раза больше стороны AB. Точки M и N делят AD на три равные части. Найдите ∠AMB + ∠ANB + ∠ADB. Известно, что в выпуклом n-угольнике (n > 3) никакие три диагонали не проходят через одну точку. Можно ли через вершины куба провести 8 параллельных плоскостей так, чтобы расстояния между соседними плоскостями были равны? Три шахматиста A, B и C сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков A занял первое место, C – последнее, а по числу побед, наоборот, A занял последнее место, C – первое (за победу присуждается одно очко, за ничью – пол-очка)? Предположим, что нашлись 15 простых чисел, образующих арифметическую прогрессию с разностью d. Докажите, что d > 30000. |
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 133]
В вершинах 33-угольника записали в некотором порядке целые числа от 1 до 33. Затем на каждой стороне написали сумму чисел в её концах.
На доске написаны девять приведённых квадратных трёхчленов: x² + a1x + b1, x² + a2x + b2, ..., x² + a9x + b9. Известно, что последовательности a1, a2, ..., a9 и b1, b2, ..., b9 – арифметические прогрессии. Оказалось, что сумма всех девяти трёхчленов имеет хотя бы один корень. Какое наибольшее количество исходных трёхчленов может не иметь корней?
Предположим, что нашлись 15 простых чисел, образующих арифметическую прогрессию с разностью d. Докажите, что d > 30000.
Пусть a, b, c — различные простые числа. Докажите,
что числа
На диске хранится 2013 файлов размером 1 Мб, 2 Мб, 3 Мб, ..., 2012 Мб, 2013 Мб. Можно ли их распределить по трём папкам так, чтобы в каждой папке было одинаковое количество файлов и все три папки имели один и тот же размер (в Мб)?
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 133]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке