ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Некоторое натуральное число n имеет два простых делителя. Его квадрат имеет  а) 15;  б) 81 делителей. Сколько делителей имеет куб этого числа?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 79]      



Задача 109436

Темы:   [ Количество и сумма делителей числа ]
[ Классическая комбинаторика (прочее) ]
[ Перебор случаев ]
Сложность: 3
Классы: 7,8,9

Найдите все нечётные натуральные числа, большие 500, но меньшие 1000, у каждого из которых сумма последних цифр всех делителей (включая 1 и само число) равна 33.

Прислать комментарий     Решение

Задача 30608

Темы:   [ Количество и сумма делителей числа ]
[ Делимость чисел. Общие свойства ]
[ Разбиения на пары и группы; биекции ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 7,8,9

Пусть натуральное число n таково, что  n + 1  делится на 24. Докажите, что сумма всех натуральных делителей n делится на 24.

Прислать комментарий     Решение

Задача 60537

Темы:   [ Количество и сумма делителей числа ]
[ Геометрическая прогрессия ]
[ Правило произведения ]
Сложность: 3+
Классы: 8,9,10

Пусть τ(n) – количество положительных делителей натурального числа  n = ,  а σ(n)  – их сумма. Докажите равенства:
  а)  τ(n) = (α1 + 1)...(αs + 1);   б)  σ(n) = ·...·.

Прислать комментарий     Решение

Задача 60538

Темы:   [ Количество и сумма делителей числа ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9

Найдите натуральное число n, зная, что оно имеет два простых делителя и удовлетворяет условиям  τ(n) = 6,  σ(n) = 28.

Прислать комментарий     Решение

Задача 60539

Темы:   [ Количество и сумма делителей числа ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 7,8,9

Некоторое натуральное число n имеет два простых делителя. Его квадрат имеет  а) 15;  б) 81 делителей. Сколько делителей имеет куб этого числа?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 79]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .