ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите наименьшее основание системы счисления, в которой одновременно имеют место следующие признаки делимости:
  1) число делится на 5 тогда и только тогда, когда сумма его цифр делится на 5;
  2) число делится на 7 тогда и только тогда, когда число, составленное из двух его последних цифр, делится на 7.

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]      



Задача 66377

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Признаки делимости (прочее) ]
Сложность: 3+
Классы: 4,5,6

Учительница написала на доске двузначное число и спросила Диму по очереди, делится ли оно на 2? на 3? на 4? … на 9? На все восемь вопросов Дима ответил верно, причём ответов «да» и «нет» было поровну.
а) Можете ли вы теперь ответить верно хотя бы на один из вопросов учительницы, не зная самого числа?
б) А хотя бы на два вопроса?

Прислать комментарий     Решение

Задача 66530

Темы:   [ Разложение на множители ]
[ Признаки делимости (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

Автор: Шноль Д.Э.

Найдите наименьшее натуральное число n, для которого n2 + 20n + 19 делится на 2019.
Прислать комментарий     Решение


Задача 60817

Темы:   [ Системы счисления (прочее) ]
[ Признаки делимости (прочее) ]
Сложность: 4-
Классы: 9,10,11

а) Опишите все системы счисления, в которых число делится на 2 тогда и только тогда, когда сумма его цифр делится на 2.

б) Решите задачу, заменив модуль 2 произвольным натуральным числом  m > 1.

Прислать комментарий     Решение

Задача 60818

Темы:   [ Системы счисления (прочее) ]
[ Признаки делимости (прочее) ]
Сложность: 4-
Классы: 9,10,11

Найдите наименьшее основание системы счисления, в которой одновременно имеют место следующие признаки делимости:
  1) число делится на 5 тогда и только тогда, когда сумма его цифр делится на 5;
  2) число делится на 7 тогда и только тогда, когда число, составленное из двух его последних цифр, делится на 7.

Прислать комментарий     Решение

Задача 66008

Темы:   [ Десятичная система счисления ]
[ Признаки делимости (прочее) ]
Сложность: 4-
Классы: 10,11

Назовём натуральное число убывающим, если каждая цифра в его десятичной записи, кроме первой, меньше или равна предыдущей. Существует ли такое натуральное n, что число 16n – убывающее?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .