ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Найдите наименьшее основание системы счисления, в которой одновременно имеют место следующие признаки делимости: |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]
Учительница написала на доске двузначное
число и спросила Диму по очереди, делится ли оно на 2?
на 3? на 4? … на 9? На все восемь вопросов Дима ответил
верно, причём ответов «да» и «нет» было поровну.
Найдите наименьшее натуральное число n, для которого n2 + 20n + 19 делится на 2019.
а) Опишите все системы счисления, в которых число делится на 2 тогда и только тогда, когда сумма его цифр делится на 2. б) Решите задачу, заменив модуль 2 произвольным натуральным числом m > 1.
Найдите наименьшее основание системы счисления, в которой одновременно имеют место следующие признаки делимости:
Назовём натуральное число убывающим, если каждая цифра в его десятичной записи, кроме первой, меньше или равна предыдущей. Существует ли такое натуральное n, что число 16n – убывающее?
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|