ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите равенства:
  а)  z + = 2Re z;   б)  z = 2i Im z;   в)  z = |z|2.

   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 5977]      



Задача 61001

 [Формулы сокращенного умножения]
Тема:   [ Разложение на множители ]
Сложность: 2
Классы: 7,8,9

Докажите следующие формулы:

an+1bn+1 = (a – b)(an + an–1b + ... + bn);

a2n+1 + b2n+1 = (a + b)(a2na2n–1b + a2n–2b2 – ... + b2n).

Прислать комментарий     Решение

Задача 61065

Тема:   [ Алгебраическая форма, сопряжение, модуль и т.п. ]
Сложность: 2
Классы: 9,10,11

Пусть  z = x + iy,  w = u + iv.  Найдите
  а)  z + w;   б)  zw;   в)  z/w.

Прислать комментарий     Решение

Задача 61066

Тема:   [ Алгебраическая форма, сопряжение, модуль и т.п. ]
Сложность: 2
Классы: 9,10,11

Докажите равенства:
  а)     б)     в)     г)     д)  

Прислать комментарий     Решение

Задача 61067

Тема:   [ Алгебраическая форма, сопряжение, модуль и т.п. ]
Сложность: 2
Классы: 9,10,11

Докажите равенства:
  а)  z + = 2Re z;   б)  z = 2i Im z;   в)  z = |z|2.

Прислать комментарий     Решение

Задача 61175

Тема:   [ Геометрия комплексной плоскости ]
Сложность: 2
Классы: 10,11

Пусть z1 и z2 – фиксированные точки комплексной плоскости. Дайте геометрическое описание множеств всех точек z, удовлетворяющих соотношениям:
  а)  arg = 0;   б)  arg = 0.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 5977]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .