|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что ½ (x² + y²) ≥ xy при любых x и y. Из вершины A треугольника ABC опущены перпендикуляры AM и AP на биссектрисы внешних углов B и C. Определите коэффициент an в разложении
(1 + qx)(1 + qx2)(1 + qx4)(1 + qx8)(1 + qx16)...= a0 + a1x + a2x2 + a3x3 +...
Как выглядит формула для корней биквадратного уравнения x4 + px2 + q = 0, если p2 – 4q < 0? |
Страница: 1 2 3 4 >> [Всего задач: 19]
Докажите, что числа wk (k = 0, ..., n – 1), являющиеся корнями уравнения wn = z, при любом z ≠ 0 располагаются в вершинах правильного n-угольника.
Докажите, что квадратные корни из комплексного числа z = a + ib находятся среди чисел w = ±
Как нужно выбрать знак перед вторым слагаемым в скобке, чтобы получить два нужных корня, а не сопряженные к ним числа?
Вычислите
Решите в комплексных числах следующие квадратные уравнения:
Как выглядит формула для корней биквадратного уравнения x4 + px2 + q = 0, если p2 – 4q < 0?
Страница: 1 2 3 4 >> [Всего задач: 19] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|