|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На плоскости дано пять точек, причем никакие три из них не лежат на одной прямой. Докажите, что четыре из этих точек расположены в вершинах выпуклого четырехугольника. Жители города Глупова пользуются купюрами только в 35 и 80 тыров. Сможет ли рассчитаться продавец с покупателем, который хочет купить Докажите, что если |z| = 1 (z ≠ –1), то для некоторого действительного t справедливо равенство z = (1 + it)(1 – it)–1. |
Страница: 1 2 3 4 >> [Всего задач: 17]
Докажите, что угол между прямыми, пересекающимися в точке z0 и проходящими через точки z1 и z2, равен аргументу отношения
Докажите, что если x + iy = (s + it)n, то x2 + y2 = (s2 + t2)n.
Докажите, что если |z| = 1 (z ≠ –1), то для некоторого действительного t справедливо равенство z = (1 + it)(1 – it)–1.
Докажите две формулы Муавра. Первая из них дает правило возведения в степень комплексного числа, представленного в тригонометрической форме
Докажите равенство
Страница: 1 2 3 4 >> [Всего задач: 17] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|