Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Какое наибольшее число королей можно поставить на шахматной доске так, чтобы никакие два из них не били друг друга?

Вниз   Решение


Докажите, что произвольное дробно-линейное отображение вида    с  δ = ad – bc ≠ 0  может быть получено композицией параллельных переносов и отображения вида  w = R/z.


Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 47]      



Задача 61155

Тема:   [ Преобразования комплексной плоскости (прочее) ]
Сложность: 4-
Классы: 9,10,11

Постройте образ квадрата с вершинами  A(0, 0),  B(0, 2),  C(2, 2),  D(2, 0)  при следующих преобразованиях:
  а)  w = iz;   б)  w = 2iz – 1;   в)  w = z²;   г)  w = z–1.

Прислать комментарий     Решение

Задача 61156

Тема:   [ Преобразования комплексной плоскости (прочее) ]
Сложность: 4-
Классы: 9,10,11

Куда переходит полоса  2 < Re z < 3  при отображениях:
  а)  w = z–1;   б)  w = (z – 2)–1;   в)  w = (z5/2)–1?

Прислать комментарий     Решение

Задача 61161

Тема:   [ Дробно-линейные преобразования ]
Сложность: 4-
Классы: 10,11

Докажите, что произвольное дробно-линейное отображение вида    с  δ = ad – bc ≠ 0  может быть получено композицией параллельных переносов и отображения вида  w = R/z.


Прислать комментарий     Решение

Задача 61185

Тема:   [ Дробно-линейные преобразования ]
Сложность: 4-
Классы: 10,11

Докажите, что уравнение  Azz + Bz – B z + C = 0  при отображениях  w = z + u  и  w = R/z  переходит в уравнение такого же вида. Получите из этого круговое свойство дробно-линейных отображений (см. задачу 61183).

Прислать комментарий     Решение

Задача 61190

Тема:   [ Геометрия комплексной плоскости ]
Сложность: 4-
Классы: 10,11

Докажите, что cтепень точки w относительно окружности  Azz + Bz – B z + C = 0  равна  

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 47]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .