ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Представьте в виде композиции дробно-линейного отображения   w =   и комплексного сопряжения   w = z  инверсию относительно окружности
  а) с центром i и радиусом R = 1;
  б) с центром  Reiφ  и радиусом R;
  в) с центром z0 и радиусом R.

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 118]      



Задача 61160

Тема:   [ Дробно-линейные преобразования ]
Сложность: 3+
Классы: 10,11

Докажите, что дробно-линейные отображения являются взаимно-однозначными отображениями расширенной комплексной плоскости.

Прислать комментарий     Решение

Задача 61180

Темы:   [ Геометрия комплексной плоскости ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 10,11

Докажите, что условием того, что четыре точки z0, z1, z2, z3 лежат на одной окружности (или прямой) является вещественность числа  

Прислать комментарий     Решение

Задача 61182

Тема:   [ Дробно-линейные преобразования ]
Сложность: 3+
Классы: 10,11

Как изменяется двойное отношение  W(z1, z2, z3, z4)  при действии отображения  ?

Прислать комментарий     Решение

Задача 61184

Тема:   [ Геометрия комплексной плоскости ]
Сложность: 3+
Классы: 10,11

Докажите, что уравнение окружности (или прямой) на комплексной плоскости всегда может быть записано в виде  Azz + Bz – B z + C = 0,  где A и C – чисто мнимые числа.

Прислать комментарий     Решение

Задача 61187

Темы:   [ Дробно-линейные преобразования ]
[ Инверсия (прочее) ]
Сложность: 3+
Классы: 10,11

Представьте в виде композиции дробно-линейного отображения   w =   и комплексного сопряжения   w = z  инверсию относительно окружности
  а) с центром i и радиусом R = 1;
  б) с центром  Reiφ  и радиусом R;
  в) с центром z0 и радиусом R.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 118]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .