|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Расстоянием между двумя клетками бесконечной шахматной доски назовём минимальное число ходов в пути короля между этими клетками. На доске отмечены три клетки, попарные расстояния между которыми равны 100. Сколько существует клеток, расстояния от которых до всех трёх отмеченных равны 50? Улитке нужно забраться на дерево высотой 10 метров. За день она поднимается на 4 метра, а за ночь сползает на 3. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 118]
Докажите, что уравнение прямой на комплексной плоскости всегда может быть записано в виде Bz – B z + C = 0, где C – чисто мнимое число.
После экспериментов с мнимой единицей, Коля Васин занялся комплексной экспонентой. Пользуясь формулами задачи 61115, он смог доказать, что sin x всегда равен нулю, а cos x – единице:
Изобразите на комплексной плоскости множество точек z, удовлетворяющих условию |z – 1 – i| = 2|z + 1 – i|.
Докажите, что на комплексной плоскости равенством |z – a| = k|z – b| при k ≠ 1 задается окружность (a и b – действительные числа).
Решите в комплексных числах уравнения:
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 118] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|