ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Расстоянием между двумя клетками бесконечной шахматной доски назовём минимальное число ходов в пути короля между этими клетками. На доске отмечены три клетки, попарные расстояния между которыми равны 100. Сколько существует клеток, расстояния от которых до всех трёх отмеченных равны 50?

Вниз   Решение


Улитке нужно забраться на дерево высотой 10 метров. За день она поднимается на 4 метра, а за ночь сползает на 3.
Когда она доползет до цели, если стартовала улитка утром в понедельник?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 118]      



Задача 61179

Тема:   [ Геометрия комплексной плоскости ]
Сложность: 3
Классы: 10,11

Докажите, что уравнение прямой на комплексной плоскости всегда может быть записано в виде  BzB z + C = 0,  где C – чисто мнимое число.

Прислать комментарий     Решение

Задача 61540

Темы:   [ Комплексная экспонента ]
[ Задачи-шутки ]
Сложность: 3
Классы: 10,11

После экспериментов с мнимой единицей, Коля Васин занялся комплексной экспонентой. Пользуясь формулами задачи 61115, он смог доказать, что  sin x  всегда равен нулю, а  cos x  – единице:

   
Где ошибка в приведённых равенствах?

Прислать комментарий     Решение

Задача 61073

Тема:   [ Геометрия комплексной плоскости ]
Сложность: 3+
Классы: 9,10,11

Изобразите на комплексной плоскости множество точек z, удовлетворяющих условию  |z – 1 – i| = 2|z + 1 – i|.

Прислать комментарий     Решение

Задача 61074

 [Окружность Аполлония]
Темы:   [ Геометрия комплексной плоскости ]
[ Окружность Ферма-Аполлония ]
Сложность: 3+
Классы: 9,10,11

Докажите, что на комплексной плоскости равенством  |z – a| = k|z – b|  при  k ≠ 1  задается окружность (a и b  – действительные числа).

Прислать комментарий     Решение

Задача 61082

Тема:   [ Алгебраические уравнения в C. Извлечение корня ]
Сложность: 3+
Классы: 9,10,11

Решите в комплексных числах уравнения:
  а)  z4 – 4z3 + 6z2 – 4z – 15 = 0;   б)  z3 + 3z2 + 3z + 3 = 0;   в)  z4 + (z – 4)4 = 32;   г)  

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 118]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .