ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Имеется 30 человек, некоторые из них знакомы. Доказать, что число человек, имеющих нечётное число знакомых, чётно.

Вниз   Решение


Существует ли выпуклый многогранник, имеющий 12 рёбер, которые соответственно равны и параллельны 12 диагоналям граней куба?

ВверхВниз   Решение


Автор: Замков В.

Витя выложил из карточек с цифрами пример на сложение и затем поменял местами две карточки. Как видите, равенство нарушилось. Какие карточки переставил Витя?

ВверхВниз   Решение


Пусть AE и CD – биссектрисы треугольника ABC,  ∠BED = 2∠AED  и  ∠BDE = 2∠EDC.  Докажите, что треугольник ABC – равнобедренный.

ВверхВниз   Решение


Решите уравнение

arcsin$\displaystyle {\dfrac{x^2-8}{8}}$ = 2 arcsin$\displaystyle {\dfrac{x}{4}}$ - $\displaystyle {\dfrac{\pi}{2}}$.


Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 25]      



Задача 61231

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Обратные тригонометрические функции ]
Сложность: 3
Классы: 9,10

Докажите равенство:

4arctg $\displaystyle {\textstyle\frac{1}{5}}$ - arctg $\displaystyle {\textstyle\frac{1}{239}}$ = $\displaystyle {\frac{\pi}{4}}$.


Прислать комментарий     Решение

Задача 61240

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Обратные тригонометрические функции ]
Сложность: 3
Классы: 9,10

Докажите, что если 0 < x < 1 и

$\displaystyle \alpha$ = 2arctg $\displaystyle {\frac{1+x}{1-x}}$,    $\displaystyle \beta$ = arctg $\displaystyle {\frac{1-x^2}{1+x^2}}$,

то $ \alpha$ + $ \beta$ = $ \pi$.

Прислать комментарий     Решение

Задача 61232

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Обратные тригонометрические функции ]
Сложность: 3+
Классы: 9,10

Докажите равенство:

arctg $\displaystyle {\textstyle\frac{1}{3}}$ + arctg $\displaystyle {\textstyle\frac{1}{5}}$ + arctg $\displaystyle {\textstyle\frac{1}{7}}$ + arctg $\displaystyle {\textstyle\frac{1}{8}}$ = $\displaystyle {\frac{\pi}{4}}$.


Прислать комментарий     Решение

Задача 61236

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Обратные тригонометрические функции ]
Сложность: 3+
Классы: 9,10

Докажите, что при x > 1 выполняется равенство:

2arctg x + arcsin$\displaystyle {\frac{2x}{1+x^2}}$ = $\displaystyle \pi$.


Прислать комментарий     Решение

Задача 61237

Темы:   [ Тригонометрические уравнения ]
[ Обратные тригонометрические функции ]
Сложность: 3+
Классы: 9,10

Решите уравнение

arcsin$\displaystyle {\dfrac{x^2-8}{8}}$ = 2 arcsin$\displaystyle {\dfrac{x}{4}}$ - $\displaystyle {\dfrac{\pi}{2}}$.


Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 25]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .